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Abstract—Stress is one of the key factors that impacts the qual-
ity of our daily life: from productivity and efficiency in pro duc-
tion processes to the ability of (civilian and military) individuals
in making rational decisions. Also, stress can propagate from
one individual to other working in close proximity or toward s a
common goal, e.g., in a military operation or workforce. Real-
time assessment of the stress of individuals alone is, however,
not sufficient as understanding itssourceand direction in which
it propagates in a group of people is equally – if not more –
important. A continuous near real-time in-situ personal stress
monitoring system to quantify level of stress of individuals and
its direction of propagation in a team is envisioned. However,
stress monitoring of an individual via his/her mobile device
may not always be possible for extended periods of time due
to limited battery capacity of these devices. To overcome this
challenge a novel distributed mobile computing framework is
proposed to organize the resources in the vicinity and form
a mobile device cloud that enablesoffloading of computation
tasks in stress detection algorithm from resource constrained
devices (low residual battery, limited CPU cycles) to resource rich
devices. Our framework also supports computing parallelization
and workflows defining how data and tasks are divided/assigned
among the entities of the framework are designed. The direction
of propagation and magnitude of influence of stress in a group
of individuals are studied by applying real-time, in-situ analysis
of Granger Causality. Tangible benefits (in terms of energy
expenditure and execution time) of the proposed framework
in comparison to a centralized framework are presented via
thorough simulations and real experiments.

Index Terms—distributed mobile computing; real-time stress
detection; Granger causality; experiments.

I. I NTRODUCTION

Motivation: Stress is one of the key factors affecting
physical and mental wellbeing, which is essential in any
environment where high level of performance is required and
sought. Research has shown that doctors and army personnel
experience high level of stress as tolerance for errors in their
profession is very low [7]. High-stress can significantly impair
the ability to perform tasks and to make rational decisions,
which may impact a patient’s life in case of doctors and
national security in case of army personnel [21].

Vision: Real-time stress detection provides knowledge of
the current level of stress experienced by a person and mo-
tivates him to take actions aimed at enhancing his current
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productivity. Stress can alsopropagatefrom one individual
to others working in close proximity or towards a common
goal, e.g., in a military operation or workplace. The members
in the team can be affected byanxiogenic behavior, i.e., a
behavior that induces anxiety and stress, of any/few members
of the team on other members. As an example, consider the
scenario (civilian or military) in which a team has to be formed
for a task: in this case, real-time stress detection can give
us insights into the current stress levels of different members
of the team. Also, the employees/soldiers who can perform
tasks without being overwhelmed by those at higher ranks, or
by the anxiogenic behavior of other team members, should
be selected. This capability will empower people who are in
better conditionin the field (e.g., less stressed) by putting
them in charge of the situation and providing medical help to
people who have high level of stress or induce stress on others.
This will improve effectiveness and efficiency as well as allow
dynamic hierarchy reorganization beyond existing ranks and
roles. Hence, our interest is in real-timequantificationof stress
of an individual and in understanding thedirection as well
magnitude(i.e., extent) of influence of stress from one person
to another in the same group.

Our approach: We envision a continuous near real-time,
in-situ personal stress monitoring system to quantify the level
of individual stress and its direction of propagation in a
group of people. The acquisition of physiological signals
is done via non-invasive sensors and are sent wirelessly to
the personal mobile devices of the group members. The
quantification of stress is done on the mobile device of
each person. However, stress detection for extended periods
of time can lead to significant energy expenditure of these
mobile devices. These problems are of significance as current
mobile devices have limited battery capacity, CPU cycles, and
memory size. Considering the performance trends in mobile-
device architecture and battery capacity so far, it is unlikely
that we will see any major improvements in their capabilities
in the near future [15]. In order to overcome the limitations
of individual computing devices and to enable in-situ, near
real-time detection of stress and its direction of propagation
in a team, we propose tooffload the computation tasks from
resource limited mobile devices to multiple static and mobile
devices (such as smart phones, tablets, netbooks, and laptops)
in the vicinity. Some work has been initiated whereby the
storage of medical data and computation of health monitoring
applications have been moved to powerful and centralized
remote computing platforms such as the Cloud [14], [19].
However, execution in the Cloud may not always be possible
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due to (i) frequent disconnections, (ii) low data rate, or (iii)
inability to access a wireless connection.

To enable the detection of the source of stress and its
direction of propagation in time, we propose to useGranger
Causality. In neuroscience G-Causality has established itself
as one of the promising approaches to reveal the direction of
influence between brain areas by analyzing temporal prece-
dence:if a signal change in area A consistently precedes a
signal change in area B, then A is said to Granger-cause
B [16]. In this work we extend Granger-causality approach
and advocate the use of this tool to study causality between
physiological signals from two different individuals.

Challenges: Real-time quantification of the magnitude of
stress and of its direction of propagation via our frame-
work faces both communication and computation challenges.
Firstly, large amount of data has to be moved from the
sensor nodes, which are attached to members of the group,
to the nearby computing nodes (communication bottleneck).
Secondly, estimation of stress and G-Causality of individuals
in a group is a data-intensive task that requires solving multiple
linear regression problems (computation bottleneck); also, the
computation complexity of such pairwise analysis increases
linearly for quantification of stress andquadratically for G-
Causality with the number of people in the group.

Contribution: To address these challenges, we propose
to quantify stress and its propagation (via G-Causality) ofa
team in a distributed manner by parallelizing the execution
of computing tasks. We refer to our earlier work on mobile
computing grid to enable distributed computation [26]. The
distributed grid is divided into two major entities, namely:
1) middleware, which solves the communication bottleneck
by moving the data within the network efficiently, and 2)
framework, which takes care of the high computation aspect of
the problem by assigning computation tasks “optimally” to the
different entities of the distributed grid (computation nodes).
Figure 1 envisions two scenarios, a civilian (left) and a military
(right), where sensors on the body of medical personnel or
soldiers, respectively, are used to collect continuously and non-
invasively various physiological signals (such as Galvanic Skin
Response (GSR), Electrocardiogram (ECG), body tempera-
ture, and respiratory data among others) and nearby rugged
computing devices – organized by our mobile computing
framework – are used for real-time compute-intensive group-
stress analysis.

The major contributions of this work are as follows.
• Enabling estimation of stress of a group of individuals

in real time through the collaboration of local computing
resources so to form adistributed mobile grid.

• Enabling compute-intensive group Granger-Causality
analysis of stress using our mobile-grid framework aimed
at estimating the direction of stress propagation.

• Demonstration via simulations and real experiments of
the benefits of our distributed computing framework.

Paper outline: The rest of the article is organized as
follows. In Sect. II we discuss the state of the art in the areaof
real-time stress detection; in Sect. III, we present our proposed
solution, which is aimed at enabling real-time quantification of
stress of a group of people and at estimating the direction of
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Fig. 1: Distributed resource provisioning framework for real-
time monitoring of stress and of its propagation in a team.

stress propagation via distributed G-Causality; in Sect. IV, we
describe our experimental methodology, discuss the benefits
of our distributed computing framework, and present simu-
lation and experimental results to demonstrate the potential
of G-Causality in estimating propagation of stress; finally, in
Sect. V, we present our conclusions and plans for future work.

II. RELATED WORK

Different physiological signals are considered in the litera-
ture for real-time stress detection, e.g., GSR, finger tempera-
ture, blood volume pulse, pupil dilation, and eyetracking [4],
[28]. The main characteristic of these works lies in the factthat
signals are acquired in a non-intrusive manner; furthermore,
these physiological signals provide a predictable relation with
stress variation. Once the physiological measurements have
been collected, a variety of techniques such as support vector
machines, fuzzy logic, and Fisher linear discriminant analysis
are used for stress estimation [8], [23], [27]. Work has also
been done to estimate stress detection of drivers [12], [11]in
real time to improve their mental state by managing music
selection in the vehicle and by providing various distraction
management techniques. In [9], the authors propose using vir-
tual reality to expose a person to various potential stressors and
design a decision support system based on machine learning
to estimate the person’s stress levels. Effective coping skills
are given to the person based on their stress levels to prepare
him/her for a similar situation. In [5] authors use only GSR
sensor data to detect changes in stress level of a person. Their
main task is to look for changes in the observed GSR data
from a not stressed state to an aroused state (stressed state).
The authors also present techniques on how to remove noise
and disturbances in the GSR signal. In [20] authors present
SVM based models for stress detection form physiological
measurements such as ECG, GSR, respiratory features, and
body temperature. In [22], [11] the authors enable stress de-
tection by including activity data from accelerometer sensors.
This analysis takes into account the physical activity being
performed by the user while estimating stress to distinguish
between physical and mental stress.

The work in the area of real-time stress detection has so far
focused on stress detection of an individual only. Furthermore,
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current works do not study the direction of propagation of
stress in a group to determine the source of stress so to improve
group dynamics. Also, all the work done so far suffers from
the curse of extreme centralization. i.e., stress estimation is
done at a centralized location, hence, creating a single point
of failure. Our framework, on the other hand, enables group
stress detection by offloading tasks to those nearby resources
that are willing/able to offer their computational capability.
It also overcomes the issues faced by failure of a single
computation node by having a resource pool to distribute tasks
to in case of failure of one node. Our middleware provides the
required communication infrastructure to distribute tasks and
receive results from nearby entities underuncertainnetwork
conditions and device availability.

III. PROPOSEDSOLUTION

We present here our solution to enable real-time stress de-
tection and its direction of propagation for a group of people.
We begin by giving details of a representative scenario in
which stress of a group of people is monitored. We present our
experimental setup to collect physiological measurementsfrom
non-invasive sensors. Next, we explain our proposed method-
ology for real-time group stress estimation. Our methodology
consists of two sequential time periods, namely,acquisition
period, to collect physiological data from group members
andstress detection period, to determine stress levels of each
member of the group as well as the source of stress in the
group via G-Causality. Next, we describe the entities of our
proposed distributed computing framework, which provides
the computation and communication infrastructure to execute
stress-detection algorithms in a distributed manner. We also
show how the magnitude and direction of propagation of
stress can be determined for a group of people by exploiting
G-Causality. At the end of this section, we discuss how
distributed computation of G-Causality is performed usingour
framework to monitor propagation of stress in a group.

A. Methodology for Continuous Stress Detection

Representative scenario:We consider a scenario where a
group of people require constant monitoring of physiological
signals so to profile their stress levels and prevent any riskof
fatal-health condition. This scenario can be seen in a military
base or workplace where high levels of stress can impact
decision making, or in a hospital or assisted-living facility
where constant monitoring of vital signs can help detect any
condition that requires immediate medical attention.

Data Acquisition: Among the various physiological signals
such as Galvanic Skin Response (GSR), Electrocardiogram
(ECG), Electromyogram (EMG), body temperature, and res-
piration, the authors in [12] have shown that skin conductivity
metrics (derived from GSR) and heart rate metrics (derived
from ECG) are the most closely related to stress level of an
individual, hence, we use these two physiological signals for
stress detection. To detect stress in the people being monitored,
we measure physiological signals (here GSR and ECG) via
non-invasive sensors attached to their body such that they do
not interfere with their daily activities. To enable continuous
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Fig. 2: Proposed acquisition and computation methodology for
real-time individual and group stress detection.

real-time detection of stress of individualsin a group, we
propose a novel methodology, shown in Fig. 2. Real-time stress
detection is executed over two sequential time periods, namely,
acquisition (TA) and computation(TC) periods. Acquisition
period involves collection of data via non-invasive sensors and
the computation period we first quantify the stress experienced
by people in the team followed by estimating the direction of
propagation of stress among team members. We briefly explain
the two sequential time periods.

(a) (b)

Fig. 3: SHIMMER sensors (a) Electrocardiogram (ECG) and
(b) Galvanic Skin Response (GSR).

The acquisition period (TA) involves collecting data from
all the members in a group for whom the stress has to be
monitored. The GSR sensors measure the change in elec-
trodermal activity (increase in conductance) as sweat glands
are stimulated for a hydrate solution. An ECG signal is a
recorded tracing of the electrical activity generated by the
heart. We derive various metrics from these signals to quantify
the stress experienced by a person. In our experiments we use
non-invasive GSR and ECG sensors provided by Shimmer
Sensing [1]. Figure 3(a) and (b) show the ECG and GSR
sensors, respectively. These sensors communicate data to the
smartphones via Bluetooth. The sampling rate of the GSR
sensors is set to50 Hz and to100 Hz for the ECG sensors.
If the application requires differentiation between mental and
physical stress, then the activity data collected via accelerom-
eter or annotations from the user (information provided by the
user that s/he is experiencing high physical stress, e.g., exercise
or climbing stairs) can be used to detect the time period of
the physical activity. If the focus is only on mental stress,then
the application can choose to not consider data acquired during
the time period that is annotated as high physical activity.
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TABLE I: Different phases of experiment to quantify stress.

Phases Types of Questions
Num. of
Ques-
tions

Time
[min]

Phase-1 2.5
Relaxed Stage (RX1)

Phase-2 (STR1)
Stroop Test 1 2
Logical Questions 3 4

Difficulty Level: Low Arithmetic Questions 3 4
Memory Based 1 1

Phase-3 (STR2) Stroop Test 1 1
Difficulty Level: High Logical Questions 2 2.5

Arithmetic Questions 2 2.5

Phase-4 3
Relaxed Stage (RX2)

Training Phase: In the training phase we record GSR
and ECG data for each person in the team. We consider the
stress experienced by a person into three categories, namely,
low, medium, and high. We extract different features from
GSR and ECG data for different levels for stress for each
person in the team. To collect data for different levels of
stress we have designed an experiment setup as shown in
Table I. The experiment is divided into four phases where
each phase consists of a set of questions and the difficulty
level of questions increase as we move to the higher phases.
A phase can be further divided into stages. Phase-2 and 3 are
stress-inducing phases and consists of different stages, where
each stage involves questions of a particular type like memory
based, arithmetic, and logical questions. The first phase, Phase-
1, starts with a relaxed stage (RX1) where the team members
are asked to take deep breaths and relax, typically lasting for
two minutes. The next phase Phase-2 (STR1) involves three
stages (Stroop Test, Logical Questions, Arithmetic Questions).
In Phase-2 (STR1) master gives Stroop test to team members,
where each member says the name of the color of the word
on the screen and not what the word says. This stage typically
lasts 1 minute. Next, 3 logic and 3 arithmetic questions
are given by the master to the team members. Each stage
lasts for about nine minutes. In this phase the questions are
simple and ample time is given to the team members. This
completes Phase-2 of the experiment. In the next phase, Phase-
3 (STR2), the difficulty level of questions increases and also
the time allocated for each question is decreased. The first
stage involves a memory-based question where team members
are shown a sequence of colors for a minute and, at the end
of the minute, they repeat the sequence back. The second
stage is the Stroop test. In the next stage, a set of logic
and arithmetic questions are asked. This stage typically lasts
for seven minutes. In the next phase, Phase-4, the members
are asked to relax (RX2). This phase typically lasts for three
minutes. In our experiments we consider the acquisition time
period (TA) to be up to 1 minute and computation time period
(TC) to be up to 30 seconds. The team consists of 5 people
and the device pool includes around 8-10 devices (static and
mobile devices). The data rate is up to4 Mbps for WiFi and
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Fig. 4: Normalized GSR-ECG data of a person acquired during
the training phase.
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up to 3 Mbps for Bluetooth 2.0, required for communication
between sensors and smartphones.

Figure 4 shows normalized GSR data and normalized beats
per minute (bpm) metric derived from ECG data of a person.
Both GSR and ECG data are collected during different stages
of the experiment (shown in Table I) conducted during the
training phase to extract features of different levels of stress.
We consider RX1 and RX2 to be low stress inducing phases,
STR1 to be medium stress inducing phase, and ST2 to be high
stress inducing phase. We observe significant increase in both
GSR andbpm data in the two phases STR1 and STR2. Also,
we observe that the value of both GSR andbpm increase as
we move from STR1 to STR2 phase. In the relaxed stage RX1,
on the other hand, we observe relatively low values of data
and in RX2 we observe significant decrease in both GSR and
bpm data after the two stress inducing stages.

Workflow: In Fig. 5 we present our workflow which shows
the sequence of tasks that need to be executed to quantify
the level of stress experienced by an individual. We first
obtain the physiological data (ECG, GSR, and activity data)
from the sensor nodes attached to a person’s body. Next,
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we preprocess the data to remove any noise in the signal.
Preprocessing of ECG signal involves filtering the data to
remove noise, upsampling, QRS complex detection, and peak
to peak detection (involves estimation of R-R interval in the
QRS complex). The GSR signal contains two-sided local noise
peaks that are caused by a physical disturbance of the contact
between the skin and the sensors, this is removed via median
filtering. Also, gaps in the GSR signal can be observed when
the fit between the skin and the sensors is not tight enough, as
the result the contact is continuously broken. This is done by
checking the data for contiguous blocks of gaps and removing
them. Activity data (accelerometer or annotations from the
user) are filtered to remove noise. Next, step involves feature
extraction from the pre-processed data. For ECG data, we
extract time-domain features such mean RR interval (mRR),
mean heart rate (mHR), heart rate deviation (SDHR), RR
interval deviation (SDRR), coefficient of variance of RR
interval, root mean square successive difference (RMSSD),as
well as frequency-domain features such as power spectrum of
very low frequency (VLF), power spectrum of low frequency
(LF), and power spectrum of high frequency (HF). Features
extracted from GSR data include mean skin conductance
level (SCL), skin conductance level deviation (DSCL), mean
absolute deviation of the skin conductance level (SCLMAD),
number of GSR responses (SRR), amplitude of GSR responses
in a window (SRA), sum of the area of GSR responses in a
window (GSRA). A supervised learning algorithm, such as the
K-Nearest Neighbor method (k-NN) [3], is employed for real-
time stress estimation of the people in the group. Once the
stress of each member of the team has been estimated, then
the direction of propagation of stress in the team is quantified
via G-Causality.

B. Distributed Computing Framework

The execution of stress detection algorithms can be executed
locally in the personal mobile device of the team members
or at a centralized location after receiving physiologicaldata
from all the team members. However, both these strategies
have their disadvantages. Firstly, mobile devices have very
limited battery capacity and executing stress detection algo-
rithms for extended period of time entails additional energy
expenditure of the battery besides executing their essential
functionalities (e.g., calling and texting). Secondly, centralized
execution suffers from a single point of failure. Also, in case
the network data rate is low or the network connectivity
suffers from frequent disconnections then significant overhead
is incurred by mobile devices (in terms of time and energy) in
communicating application data to the centralized computing
resource.

Computation and communication overhead:In Fig. 6(a),
we show how the residual capacity of different mobile devices
varies over time when the stress detection algorithm are exe-
cuted on them. All devices start with100% battery capacity.
We see that the two smartphones (HTC Desire and Motorola
Atrix) have discharge up to60 % in less than5 hours when
only stress detection algorithms are executed on them; this
shows that the battery capacity of a single mobile device is
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Fig. 6: (a)Computation overheadincurred at various mobile
devices when stress is monitored for extended periods of time;
(b) Communication overheadincurred when the physiological
data is transferred from the local nodes to a centralized node.

not enough to monitor stress of an individual. In Fig. 6(b) we
observe the energy expenditure incurred at different devices
of the people in the group when stress of a group of people
is monitored at a centralized node. The energy expenditure
incurred at the devices here is due to the communication
overhead incurred when the data is transferred from them to a
centralized location. The stress detection algorithm is executed
at the centralized location. To overcome the obstacle of limited
energy faced by such devices, we envision thatpool of mobile
devices(laptops, smartphones, notebooks, and tablets) in the
vicinity can collaborate to form anelasticresource pool. Such
distributed pool provides its computation and communication
capabilities so to enable applications that otherwise could
not be supported because of limited battery and memory
constraints of a single device. To achieve our vision, we
propose a distributed computing framework that utilizes the
local resources for data generation and processing, and delivers
application results in near real time without relying on any
external remote resource.

Framework entities: The entities (i.e., the mobile devices
in the vicinity) of the distributed computing framework may
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at any time play one or more of the following three logical
roles: i)service requester, which places requests for workloads
that require additional data and/or computing resources from
other devices, ii)service provider, which can be a data
provider, resource provider, or both, and iii) anarbitrator
(usually, the base station), which processes the requests from
the requesters, determines the set of service providers that
will provide or process data, and distributes the workload
tasks among them. The service requester offloads (shares) the
task of executing compute-intensive algorithms to (with) the
service providers by submitting service requests to one of
the arbitrators. Resource providers lend their computational
(CPU cycles), storage (volatile and non-volatile memory),and
communication (i.e., network interface capacity) resources for
processing data. The arbitrator is aided by an energy-aware
resource allocation engine that distributes the workload tasks
optimally among the service providers.

Our framework applies to applications exhibitingdata par-
allelism as well as to applications exhibitingtask parallelism.
Data-parallel applications are also referred to as “embarrass-
ingly parallel” applications in which an independent set of
tasks, homogeneous but working on disjoint sets of data,
can be performed in parallel (but preceded and succeeded
by pre- and post-processing tasks, respectively). Task-parallel
applications, on the other hand, have a set of sequential as
well as parallel tasks with pre-determined dependencies and
degree of parallelism. Also, our framework is endowed with
severalautonomiccapabilities such as self organization, self
optimization, and self healing. The self-organization capability
(for handling service discovery and service request arrivals
as well as for task distribution and management) is imparted
by the role-based architectural framework. It also facilitates
interactions among the mobile entities for coordination and
seamless switching among the three logical roles, namely,
service requesters, service providers, and arbitrators [25].

Service discovery: Service discovery at the arbitrator is
achieved through service advertisements from the service
providers. Service advertisements will include information
about the current position, amount of computing (γcpu

n , in
terms of normalized CPU cycles), memory (γmem

n [Bytes]),
and communication (γnet

n [bps]) resources, the start (tinn ) and
end (toutn ) times of the availability of those resources, and the
available battery capacity (eadvn [Wh]) at each service provider
n. The arbitrator is aware of the instantaneous power drawn
by the workload tasks of a specific application when running
on a specific class of CPU and memory (together given by
ccomp
n [W]) as well as network (cnetn [W]) resources at each

service provider as the information about the different types of
devices is known in advance. The arbitrators use the informa-
tion from service advertisements of theN computing devices
to derive the following:R={rmn}N×N [m], which conveys the
distancermn between devicesm andn, S={sn}1×N , where
sn ∈ {1, 0}, which conveys whethern is a resource provider
or not, andD={dn}1×N , wheredn ∈ {1, 0}, which conveys
whethern is a data provider or not.

Workload management: Each arbitrator is composed of
two components, namely,workload managerand scheduler/
optimizer. The workload manager handles tracking of work-

load requests, allocation of workload tasks, and aggregation
of results. The optimizer identifies the number of service
providers available and determines the optimal distribution
of workload tasks among them. When a service requester
needs additional computing resources to process the data it
generates, it submits a service request to the nearest arbitrator
and also specifies the maximum duration for which it is
ready to wait for a service response. The optimizer will share
the workload submitted by the requester among the available
service providers based on one of several possible policies.

Energy-aware resource allocation:To take into account
the different resource capabilities (in terms of residual battery
capacity) and leverage heterogeneity in the vicinity, our frame-
work incorporates an energy-aware resource-allocation engine.
This engine selects the SPs and the number of tasks that should
be given to each SP. An arbitrator is aware via advertisements
of the residual battery capacity of all devices in the resource
pool. In this formulation, the objective of the arbitrator is the
maximization of minimum residual battery capacityat all the
service providers,maxminn eresn [Wh], while ensuring that
the service response is delivered withinδmax [s].

Maximize: min
n

eresn , (1)

where, eresn = eadvn − (edatan + ecomp
n ); (2)

edatan =
δdn

3600
· cnetn ; (3)

ecomp
n = un ·

δsn
3600

· ccomp
n . (4)

In (2), edatan +ecomp
n is the amount of battery capacity drained

at each service providern; δdn for a service providern depends
on the amount of data it has to transmit (ω [Bytes] as a data
provider) or aggregate (ω ·

∑N

i=1 ain [Bytes] as a resource
provider), and the availed communication capability, given by,

δdn =

{

f(ω, γnet
n ) if un = 0,

f(ω ·
∑N

i=1 ain) if un = 1.
(5)

C. Propagation of Stress via Granger Causality

Granger-Causality is implemented as a part of the com-
prehensive stress detection algorithm (duringTR) to esti-
mate the source of stress in a group of people as well as
the direction of its propagation in a group. A time series
x = {x1, x2, . . . , xt, . . .} is said to Granger-cause another
time seriesy if including information about the past ofx
significantly increases the prediction accuracy of the current
valueyt of y in comparison to predicting it basedonly on the
past values ofy alone [6]. G-Causality was initially introduced
in [10], where the authors implemented it using two vector
Auto-Regressive (AR) models.

The first, calledrestricted model,

xt =

P
∑

j=1

ajxt−j + δ1t, yt =

P
∑

j=1

ajyt−j + γ1t, (6)

calculates how much two time series,x and y, can be ‘ex-
plained’ by their own past (xt-j andyt-j , with j = 1, 2, . . .),
resulting in residual error variances∆1 = var(δ1t) andΓ1 =
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var(γ1t) (the model order is represented byP , which specifies
how many previous time points are taken into account, and the
length of the time series byT , with P < T ).

In the second model, calledunrestricted model,

xt =

P
∑

j=1

ajxt−j +

P
∑

j=1

bjyt−j + δ2t,

yt =

P
∑

j=1

ajyi−j +

P
∑

j=1

bjxt−j + γ2t,

(7)

the prediction is based on the time series’ own pastand the
past of the other time series. This results in residual error
variances∆2 = var(δ2t) and Γ2 = var(γ2t). The linear
influence fromx to y, annotated asFx→y, and fromy to x,
i.e., Fy→x, can now be calculated as the ratio between the
variances of the residual error, i.e.,

Fx→y = ln
var(γ1t)

var(γ2t)
= ln

Γ1

Γ2

, Fy→x = ln
var(δ1t)

var(δ2t)
= ln

∆1

∆2

.

(8)
A reduction in error variance when including the past of
another time series results in a largerF -ratio. The difference
G-Causality, i.e.,Fx→y–Fy→x, is then calculated to assess the
dominantdirection of information flow.

Selection of “time lag:” Selecting the time lag is an
important problem to compute the G-Causality. The estimation
of AR models requires as a parameter the number of time-
lagsP to include, i.e., the model order. Note that the decision
on the model order is critical as too few lags can lead to a
poor representation of the data, whereas too many of them can
lead to problems in the model estimation [18]. Two criteria
have been introduced in the literature, namely the Akaike
Information Criterion (AIC) [2] and the Bayesian Information
Criterion (BIC) [17], in order to estimate the model orderP .
Both these criteria help determine the quality of the model.

For n variables we have,

AIC(P ) = ln |Σ2|+
2Pn2

T
,

BIC(P ) = ln |Σ2|+
ln(T )Pn2

T
.

(9)

whereΣ2 is the noise covariance matrix of the unrestricted
model with | · | indicating the determinant of a matrix andT
is the total number of datapoints used to fit the model to the
data. The first term in (9), i.e., the logarithm of the determinant
of the estimated noise covariance matrix,ln |Σ2|), gives the
prediction error for a model of orderP , while the second
terms in both the models serve as a ‘penalty.’ Both AIC and
BIC differ as to how severely they penalize high-model orders,
with BIC more heavily penalizing higher model orders than
AIC. Either AIC or BIC are calculated for a set of model
orders and the order that gives the minimum value of AIC or
BIC is selected as the order of the AR model to determine G-
Causality between two time series. The model with the lowest
value of AIC indicates that it is the best model, i.e., it fits the
data at hand better among all the models specified.

Distributed G-Causality: To enable distributed G-
Causality calculation, we design a workflow that indicates the

2
1k

3
1k

2
3k2

2k
2
4k

Stage 1

Stage 2

Stage 3  

Multiple linear 
regression problems  

Selecting the model 
with minimum value 
of AIC 

Determine window over 
which data from each 
subject is stationary

4
1k

Stage 4Calculate G-causality 
using min (AIC)

1
1k 1

2k 1
3k 1

nk

Team members

Fig. 7: Workflow designed to execute G-Causality in our
distributed computing framework (note that the output of the
stress workflow serves as input to the G-Causality workflow).

different tasks that have to be executedin parallel as well
as thesequentialsteps that have to be taken to determine G-
Causality. Figure 7 shows the workflow diagram to compute
G-Causality. The G-Causality workflow takes as input the
output of the stress workflow model, which estimates the
stress experienced by each member of the team measured
over acquisition period (TA). In the first stage of the G-
Causality workflow (Stage 1), as seen in Fig. 7, each sensor
node performs pre-processing steps and checks thestationarity
of the stress data [10]. In case the data is not stationary, the
sensor nodes determine the time window over which the data
can be assumed stationary, i.e., when the joint probability
distribution does not change when shifted in time (and when,
consequently, parameters such as mean and variance also do
not change over time and do not follow any trends). In the
second stage (Stage 2), each sensor node solves multiple linear
regression problems, which aim at determining the model
order as in (9). Next, each node receives data from all the other
nodes in the group and calculates the model order from each
pair of nodes (Stage 3). As the last stage (Stage 4), each node
determines the G-Causality for each pair of group members.

Note that the computation complexity to determine the
stress for a team increaseslinearly with the number of team
members. On the other hand, the computation complexity to
determine the magnitude of G-Causality for a team increases
quadraticallywith the number members. This is because we
estimate G-Causality pair-wise, i.e, we calculate G-Causality
between every two members of the team. To determine G-
Causality between any pair of team members, the compute-
intensive task is the estimation of time lag, as this requires
solving a linear regression problem. The dominant operation
in a linear regression problem is matrix inversion, whose
complexity is given byO(L3), whereL is the length of the
stress data of an individual. This shows that the computation
time complexity of G-Causality between any two individuals
increases by a cubic factor with the length of the stress data
of an individual.



2168-2194 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JBHI.2015.2477342, IEEE Journal of Biomedical and Health Informatics

JBHI-00126-2015.R2 8

1 2 3 4
0

5

10

15

20

25

30

35

40

45

Time Elapsed [hr]

D
is

tr
ib

u
tio

n
 o

f 
ta

sk
s

 

 
Smartphone
Tablet
Laptop

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

Time Elapsed [hr]

R
e
si

d
u
a
l e

n
e
rg

y 
[%

]

 

 
Smartphone
Tablet
Laptop

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

Time Elapsed [hr]

M
in

im
u
m

 r
e
si

d
u
a
l e

n
e
rg

y 
[%

]

 

 
Centralized
Mobile Grid

(a) (b) (c)

Fig. 8: (a) Distribution of tasks assigned to different SPs in our testbed over the course of time; (b) Residual energy [%]of
the SPs in the resource pool over time; (c) Performance of ourdistributed mobile grid versus centralized execution in terms
of minimum energy [%] in the testbed. The results with their 95% confidence intervals are plotted.
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Fig. 9: (a) Variation of performance of distributed mobile grid in terms of minimum residual capacity [%] in the resourcepool
by varying different WiFi speeds; (b) Time time on a mobile device from our testbed (Nexus 5) for centralized online training
of new people joining a team; (c) Time taken for the executionof G-Causality by varying time lag and number of service
providers using different scheduling approaches.

IV. PERFORMANCEEVALUATION

We provide in this section the details about our testbed and
our experiment methodology; then, we present our experiment
scenarios, which are aimed at detecting stress of individuals
in a team as well as the direction of propagation of stress
among the members of team. We quantify the benefits of our
proposed distributed computing framework to enable real-time
stress detection for a group of people. We study how network
connectivity impacts the performance of the distributed grid,
and present on-line training of stress data as a candidate
for distributed computing. Next, we explain our experimental
setup to estimate direction of propagation of stress in a group.
We provide observations and inferences from the experiments
conducted, which corroborate the use of G-Causality as a tool
to estimate direction of propagation. We also explain how our
framework can implement distributed G-Causality and discuss
the benefits obtained via our framework.

Experimental testbed: The testbed devices used in the
experiment are: (i) HP Pavilion with intel i7 processor,8 GB
RAM and battery capacity of4400 mAh; (ii) Samsung Galaxy

TABLE II: Confusion matrix for stress detection algorithm.

Predicted
Low Stress Medium Stress High Stress

Actual
Low Stress 3 2 0

Medium Stress 1 4 0
High Stress 0 0 5

tablet running Android 2.2 with1 MHz processor,512 MB
RAM and battery capacity of4000 mAh; and (iii) Nexus
5 Smartphone running Android OS 4.4.4 with Quad Core
2.3 GHz–Snap dragon processor,2 GB RAM and battery
capacity of2300 mAh.

Accuracy of stress detection algorithm: In Table II we
show the confusion matrix for the stress detection algorithm.
We consider three classes of stress low, medium, and high. We
show the results for 15 different samples. We observe that the
detection accuracy of high level of stress by the stress detection
algorithm is the highest among all the classes. The F1 score
which is given byF1 = 2 · precision·recall

precision+recall
, Precision= tp

tp+fp
,

and Recall= tp
tp+fn

, where,tp is the number of true positive,



2168-2194 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JBHI.2015.2477342, IEEE Journal of Biomedical and Health Informatics

JBHI-00126-2015.R2 9

fp is the number of false positive, andfn is the number of
false negatives. The F1 score can be interpreted as a weighted
average of the precision and recall, where an F1 score reaches
its best value at 1 and worst score at 0. From the confusion
matrix we derive the following scores for our experiments: for
class low stress it is0.67, class medium stress it is0.73, and
for class high stress it is1.

A. Performance of Distributed Computing Framework

We present the performance of our distributed computing
grid in terms of energy and number of tasks executed to
estimate stress detection (executed in the time periodTC) of a
group of people in comparison to a centralized approach. We
also study the performance of mobile grid when the data rate
of WiFi is varied.

Energy expenditure: In Fig. 8(a), we see the distribution
of tasks among the different devices in the resource pool. The
distribution of resources is done at the arbitrator. We see that
different devices are given a different number of tasks overthe
course of monitoring stress. This depends on computational
capability of devices and on their residual battery capacity.
As a result, we see that different devices have been allocated
different number of tasks over time. In Fig. 8(b), we see that
the residual battery capacity of the devices in the resourcepool
is similar over a period of monitoring tasks. This is because
the goal of the resource allocation in the proposed mobile grid
is to maximize the minimum residual capacity of the resource
pool and hence tasks are allocated to devices based on their
residual battery capacity. In Fig. 8(c), we show the minimum
percentage residual battery capacity of the resource pool in
comparison to a centralized execution of the application, which
is here shown for a Nexus 5 Smartphone in the testbed.
We see that minimum percentage residual battery capacity of
distributed mobile grid is always higher than that of centralized
execution. After2 and3 hrs, we can see that the centralized
execution has a lower energy than that of mobile grid by a27
and33%, respectively.

Impact of network connectivity: We vary the data rate
of the local network to see its impact on the performance of
distributed mobile grid. We consider four data rates10, 20,
30, and40 Mbps. We observe that, as the data rate reduces,
the minimum residual energy [%] consumed increases. This is
because, as the data rate decreases, it takes longer to transmit
data to and receive results from the SPs, which consequently
leads to an increased energy consumption of mobile devices.
In Fig. 9(a) for25 tasks and a data rate of40 Mbps, we see
that the minimum residual energy in the mobile grid is16.39%
lower than when the data rate is10 Mbps. For 40 tasks and
a data rate of40 Mbps, we see that the minimum residual
energy in the mobile grid is25% lower than when data rate is
10 Mbps. From the figure we observe that for high data rates
(around30 Mbps and above) the performance of the mobile
grid is very similar for different data rates.

On-line training: In Figure 9(b) we show that on-line
training of new individuals in a team is also a good candidate
for distributed mobile computing. For new individuals entering
a team, the training and classification of stress data need to

be done to monitor stress. We show in Fig. 9(b) that, as the
number of people in the team increases, the execution time for
classification also increases. Hence, in order to enable real-
time stress detection of these new people in the team, the
classification process needs to be done via distributed mobile
computing.

B. G-Causality Results

Distributed computation of G-Causality: We compared
the performance of centralized execution of G-Causality
against its distributed computation using our mobile computing
framework. The metric for comparison is thetime takento
execute G-Causality for a team of people.

Experiments: We compared the centralized execution
(where data is given from all nodes to a sink node for
computation) (Schedule-1) with Round-Robin (in which we
distribute an equal number of tasks to all the nodes) (Schedule-
2), and a schedule where we distribute a different number of
tasks to different nodes based on their computation capability
(Schedule-3). We present how the time taken for execut-
ing group stress analysis varies as the number of resource
providers, model order, and number of members in the group
vary. We considered that the data is trasmitted from all sensors
to the nearby devices via Bluetooth. The time taken by
different devices to execute one unit task is a linear regression
problem to estimate the model order. For more details on how
devices are profiled and on the time taken to execute a unit
task of G-Causality the interested reader is referred to [24].

Observations: Figure 9(c) shows the performance of the
three scheduling approaches in terms of workload completion
time. We see that the centralized execution (Schedule-1)
as expected takes the maximum amount of time followed
by Round-Robin (Schedule-2), whereas Schedule-3 takes the
minimum amount of time. We divide our simulation into three
scenarios: in Scenario-1, we assume the number of SP to be
5, the number of team members to be5, and the maximum
possible model order to be10. In Scenario-2, we increase
the maximum number of model order from10 to 20, and in
Scenario-3 we increase the number of service providers from
5 to 10 with everything else remaining the same. The result
shows that the time taken is very sensitive to the model order.
In Scenario-4 we vary both number of service providers and
model order in order to compare the time taken by distributing
tasks under different schedules. We see that Schedule-3 takes
the least amount of time. For Scenario-1 and 3, the time taken
by the centralized execution is not affected by the number
of SPs and so it remains the same. Although both Round-
Robin and Schedule-3 divide the task among SPs, Round-
Robin performs worse than Schedule-3 because Schedule-3
assigns tasks to SPs based on their computational capability
whereas Round-Robin distributes an equal number of tasks to
all the nodes, irrespective of their capabilities.

Stress propagation: We now present results for stress
propagation in a group. As discussed earlier, we use G-
Causality to determine the extent and influence of stress from
one group member to another. To quantify the mental group
stress, we design our experiments to have four phases, as
summarized in Table I.
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Fig. 10: G-Causality between two team members for different
cases over multiple experiments. Note that the size of the
node/circle indicates the stress experienced by each team
member, the top clockwise edge label shows magnitude of
G-Causality from team member A to B, and the bottom edge
label shows the same from team member B to A; the edge
color (gray scale) indicates the G-Causality time lag (model
order) between stress data of team members (ranging from1
to 10 in our experiments).

Experiments: In our analysis, a team consists of two mem-
bers. One of the members of the team serves as a master
and assigns tasks to the other member. This simplified con-
figuration helps us understand the propagation of stress from
master to the other team member. We perform group stress
detection for three different cases: in Case-1, the first team
member serves as a master and the other one (slave) and
the master asks questions based on Table I. In Case-2 the
second member serves as the master (i.e., they switch their
roles in the experiment). In Case-3 both the two team members
receive questions based on Table I from a laptop (or a person
who is not part of the experiment). Case-3 helps us analyze
the propagation of stress when each team member performs
task independently. During an experiment, the master assigns
questions to the slave(s), keeps track of time, and at the endof
the experiment informs the slave(s) about his/her performance.
We performed all the three cases thrice and in a random order
to gain statistical insights. Each repetition of a case is termed
as an ‘experiment.’

We present our results of propagation of stress using an
visually informativebubble diagram, as depicted in Fig. 10(a),
where each member is represented by a bubble/circle. From
any nodei to j the following attributes exist: thethickness
represents the magnitude of G-Causality from nodei to j

(clockwise edge); thecolor of the edge (gray scale) represents
the model order number used to calculate the G-Causality;
and thesizeof the bubble/circle represents the average stress
experienced by the person over the course of experiment.
The higher the influence of G-Causality, the thicker the edge;
similarly, the higher the stress level experienced by a team
member, the bigger the bubble size. We term the left node ‘A’
and the right node ‘B’ for the ease of understanding.

Then, we studied the influence of G-Causality between the
two team members for different cases. We take the average
of all the experiments conducted for each case to show the
results for G-Causality. In Case-1, node B serves as master
(examiner) and conducts the test for node A (examinee). We
see that in this case, as shown in Fig. 10(b), the influence of
G-Causality from node B to node A is higher than from A to
B. Here, the dominant G-Causality direction is from B to A
and the magnitude of influence is, on average,0.47. As node
B conducts the test, the dominant direction of G-Causality
indicates that the examinee is influenced by the examiner, i.e.,
that the stress propagates from node B to node A. In Case-2,
node A serves as the master (examiner) and node B serves as
the slave (examinee), i.e., the roles are switched with respect
to the previous case. We observe that in this case, as shown
in Fig. 10(c), the influence of G-Causality from node A to
node B is higher than the influence from node B to A. The
magnitude of influence is on average0.39. This indicates that
node A being the examiner influences node B, i.e., that the
stress propagates from A to B. In Fig. 10(d) both nodes A
and B play the role of slaves and receive instruction from a
computer (master), i.e., neither of the nodes interacts with each
other. As a result, we see that the values of G-Causality from
A to B and from B to A are very close. This indicates that
neither of the nodes has a predominant influence on the other.

V. CONCLUSION AND FUTURE WORK

We presented a real-time, in-situ stress detection for a group
of people via a distributed computing framework. In the series
of experiments we also studied the direction of propagation
and magnitude of stress in a group, and analyzed how this
stress propagates over time. The results of this analysis help
quantify the direction in which the stress propagates in a
group. The work presented enables taking real-time decisions
and lays the foundation on how we can empower individuals
who are in better condition (e.g., less stressed) by puttingthem
dynamically, on a need-basis, in charge of a situation. Thiswill
help improve productivity in highly stressful situations like
military operations by, for example, reorganizing dynamically
hierarchy beyond existing ranks and roles.

As the next step, we plan to study other emotions besides
stress, e.g., fear, anxiety, and anger and to develop a complete
human mood elicitation system. This system will use other
vital signs besides GSR and HR and will require processing a
variety of models to estimate different emotions experienced
by people in a team in real time. We also plan to extend our
middleware to communicate with remote resources (such as
Clouds) and access historical medical records of the peoplein
the group in order to make more informed decisions. Last, but
not least, we plan to conduct more experiments to understand
how estimation of direction of propagation of stress in a team
can be to used as a feedback to improve group dynamics in
real time. We also plan to use additional methods e.g., mental
imagery and virtual reality in the training phase to quantify
stress of individuals. We also plan to integrate interrelation-
ships between people in a group from social networking sites
in our analysis of Granger Causality.
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