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Abstract—Stress is one of the key factors that impacts the qual- productivity. Stress can alspropagatefrom one individual
ity of our daily life: from productivity and efficiency in pro duc- to others working in close proximity or towards a common
tion processes to the ability of (civilian and military) individuals goal, e.g., in a military operation or workplace. The mersber
in making rational decisions. Also, stress can propagate fm th' t ' be affected . ic behaviori
one individual to other working in close proximity or toward s a In e. eam gan €a ec-e tgnxiogenic behaviori.e., a
common goal, e.g., in a military operation or workforce. Re& P€havior that induces anxiety and stress, of any/few mesnber
time assessment of the stress of individuals alone is, hovegy of the team on other members. As an example, consider the
not sufficient as understanding itssourceand direction in which  scenario (civilian or military) in which a team has to be fen
it propagates in a group of people is equally — if not more — ¢ 5 task: in this case, real-time stress detection can give

important. A continuous near real-time in-situ personal stress insights into th t st | Is of diff ¢ b
monitoring system to quantify level of stress of individuas and uS INSIgnts INto the current stress 1evels of difierent mers

its direction of propagation in a team is envisioned. Howewe Of the team. Also, the employees/soldiers who can perform
stress monitoring of an individual via his/her mobile devie tasks without being overwhelmed by those at higher ranks, or
may not always be possible for extended periods of time due py the anxiogenic behavior of other team members, should
to limited battery capacity of these devices. To overcome th be selected. This capability will empower people who are in

challenge a novel distributed mobile computing framework § e . .
proposed to organize the resources in the vicinity and form better conditionin the field (e.g., less stressed) by putting

a mobile device cloud that enablesoffloading of computation them in charge of the situation and providing medical help to
tasks in stress detection algorithm from resource constraied people who have high level of stress or induce stress onsther
devices (low residual battery, limited CPU cycles) to resage rich  Thijs will improve effectiveness and efficiency as well agail

devices. Our framework also supports computing paralleliation i i At ot
and workflows defining how data and tasks are divided/assigrie dylnam|_||C hleramhy treorgta.m.zatlor: ::_)eyon(;i_f_ex?tlngf ratmd an
among the entities of the framework are designed. The direan roles. ] er_lc_e, ourin er_es IS Inreal- |maan '_ Ica _|0no stress
of propagation and magnitude of influence of stress in a group Of an individual and in understanding tlgrection as well
of individuals are studied by applying real-time, in-situ analysis magnitude(i.e., extent) of influence of stress from one person
of Granger Causality Tangible benefits (in terms of energy to another in the same group.
expenditure and execution time) of the proposed framework Our approach: We envision a continuous near real-time
in comparison to a centralized framework are presented via . it | st itori t t tify Evel ’
thorough simulations and real experiments. |n-s_| u_p_ersona stress mor_1| orlng SYS em 1o quan 'fY ’
of individual stress and its direction of propagation in a
group of people. The acquisition of physiological signals
is done via non-invasive sensors and are sent wirelessly to
the personal mobile devices of the group members. The
. INTRODUCTION guantification of stress is done on the mobile device of
Motivation: Stress is one of the key factors affectingae)ac.h person. Howeve_r, S.‘Tess detection for ex_tended eriod
. . L L f time can lead to significant energy expenditure of these
physical and mental wellbeing, which is essential in an : . o
. . . . P@oblle devices. These problems are of significance as durren
environment where high level of performance is required an

sought. Research has shown that doctors and army persorW\% lle devices have limited battery capacity, CPU cycles, a

. : ... memory size. Considering the performance trends in mobile-
experience high level of stress as tolerance for errorseir th

profession is very low [7]. High-stress can significantlypiair device architecture and battery capacity so far, it is @hjik

- . .. _that we will see any major improvements in their capab#gitie
the ability to perform tasks and to make rational decisions e

. . e e it the near future [15]. In order to overcome the limitations
which may impact a patient’s life in case of doctors and

) S of individual computing devices and to enable in-situ, near
national security in case of army personnel [21]. real-time detection of stress and its direction of propagat
Vision: Real-time stress detection provides knowledge oF P

. in a team, we propose toffloadthe computation tasks from
the current level of stress experienced by a person and mo- brop P

. . . . . . fesource limited mobile devices to multiple static and rfebi
tivates him to take actions aimed at enhancing his current .
devices (such as smart phones, tablets, netbooks, ang4$pto

in the vicinity. Some work has been initiated whereby the

Index Terms—distributed mobile computing; real-time stress
detection; Granger causality; experiments.
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. . R
Wireless grid of Service providers (under- ugged computers

utilized devices in the vicinity) running
compute-intensive group stress models.

due to (i) frequent disconnections, (ii) low data rate, a@j (i
inability to access a wireless connection.

To enable the detection of the source of stress and
direction of propagation in time, we propose to @senger
Causality In neuroscience G-Causality has established itst
as one of the promising approaches to reveal the direction
influence between brain areas by analyzing temporal pre:
dence:if a signal change in area A consistently precedes
signal change in area B, then A is said to Granger-caus
B [16]. In this work we extend Granger-causality approac
and advocate the use of this tool to study causality betwe
physiological signals from two different individuals.

Challenges: Real-time quantification of the magnitude OfFig. 1: Distributed resource provisioning framework foalre

stress and of its dlrectlgn .Of propagation via our frameﬁ—me monitoring of stress and of its propagation in a team.
work faces both communication and computation challenges.

Firstly, large amount of data has to be moved from the

sensor nodes, which are attached to members of the 9rokPess propagation via distributed G-Causality; in Sa&twe

to the nearby computing nodesofnmunication bottlene¥k yegcripe our experimental methodology, discuss the benefit
Secondly, estimation of stress and G-Causality of indi&lslu ¢ ., distributed computing framework, and present simu-

in a group is a data-intensive task that requires solvindiptel - |ation and experimental results to demonstrate the patent
linear regression problemsdmputation bottlenegkalso, the of G-Causality in estimating propagation of stress; finatly

computation complexity of such pairwise analysis increasgect v, we present our conclusions and plans for future work
linearly for quantification of stress anguadratically for G-

Causality with the number of people in the group.
Contribution: To address these challenges, we propose
to quantify stress and its propagation (via G-Causalitypof Different physiological signals are considered in therdite
team in a distributed manner by parallelizing the executiaare for real-time stress detection, e.g., GSR, finger tempe
of computing tasks. We refer to our earlier work on mobileure, blood volume pulse, pupil dilation, and eyetrackiad [
computing grid to enable distributed computation [26]. Thg28]. The main characteristic of these works lies in the faat
distributed grid is divided into two major entities, namelysignals are acquired in a non-intrusive manner; furtheemor
1) middleware which solves the communication bottleneckhese physiological signals provide a predictable retatiith
by moving the data within the network efficiently, and 2¥tress variation. Once the physiological measurements hav
framework which takes care of the high computation aspect dken collected, a variety of techniques such as supporoivect
the problem by assigning computation tasks “optimally’tte t machines, fuzzy logic, and Fisher linear discriminant gsial
different entities of the distributed grid (computationdes). are used for stress estimation [8], [23], [27]. Work has also
Figure 1 envisions two scenarios, a civilian (left) and ataniy  been done to estimate stress detection of drivers [12],i[11]
(right), where sensors on the body of medical personnel @al time to improve their mental state by managing music
soldiers, respectively, are used to collect continuoustyr@on- selection in the vehicle and by providing various disti@uati
invasively various physiological signals (such as Gale@kin management techniques. In [9], the authors propose using vi
Response (GSR), Electrocardiogram (ECG), body tempetaal reality to expose a person to various potential stressad
ture, and respiratory data among others) and nearby ruggegign a decision support system based on machine learning
computing devices — organized by our mobile computing estimate the person’s stress levels. Effective copinlissk
framework — are used for real-time compute-intensive grougre given to the person based on their stress levels to grepar
stress analysis. him/her for a similar situation. In [5] authors use only GSR
The major contributions of this work are as follows. sensor data to detect changes in stress level of a persoin. The
» Enabling estimation of stress of a group of individualmain task is to look for changes in the observed GSR data
in real time through the collaboration of local computingrom a not stressed state to an aroused state (stressed state
resources so to form distributed mobile grid The authors also present techniques on how to remove noise
« Enabling compute-intensive group Granger-Causalignd disturbances in the GSR signal. In [20] authors present
analysis of stress using our mobile-grid framework aime8VM based models for stress detection form physiological
at estimating the direction of stress propagation. measurements such as ECG, GSR, respiratory features, and
» Demonstration via simulations and real experiments @bdy temperature. In [22], [11] the authors enable stress de
the benefits of our distributed computing framework. tection by including activity data from accelerometer sgas
Paper outline: The rest of the article is organized asThis analysis takes into account the physical activity gein
follows. In Sect. Il we discuss the state of the art in the afea performed by the user while estimating stress to distifguis
real-time stress detection; in Sect. lll, we present ouppsed between physical and mental stress.
solution, which is aimed at enabling real-time quantificatbf The work in the area of real-time stress detection has so far
stress of a group of people and at estimating the directionfotused on stress detection of an individual only. Furtteeem

Team members: Data Providers. One ‘é
of the member serves as arbitrator

II. RELATED WORK
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current works do not study the direction of propagation of

stress in a group to determine the source of stress so towapro ~ - Tc Tt .
group dynamics. Also, all the work done so far suffers from /" R

the curse of extreme centralization. i.e., stress estimat z =~
done at a centralized location, hence, creating a singlet poi Individual Stress Group Stress

of failure. Our framework, on the other hand, enables group ] ]
stress detection by offloading tasks to those nearby ressurc  Ta: Acquisition time Tc: Computation time

that are willing/able to offer their computational capéil Fig. 2: Proposed acquisition and computation methodology f

It also overcomes the issues faced by failure of a single”, o individual and group stress detection
computation node by having a resource pool to distributestas '

to in case of failure of one node. Our middleware provides the
required communication infrastructure to distribute taskd
receive results from nearby entities undercertain network
conditions and device availability.

real-time detection of stress of individuails a group we
propose a novel methodology, shown in Fig. 2. Real-timesstre
detection is executed over two sequential time periodsghgam
acquisition (7'4) and computation(7¢) periods. Acquisition
I1l. PROPOSEDSOLUTION period involves collection of data via non-invasive seesatd

We present here our solution to enable real-time stress dee computation period we first quantify the stress expegdn
tection and its direction of propagation for a group of peoplby people in the team followed by estimating the direction of
We begin by giving details of a representative scenario propagation of stress among team members. We briefly explain
which stress of a group of people is monitored. We present ahe two sequential time periods.
experimental setup to collect physiological measurenfeons
non-invasive sensors. Next, we explain our proposed method
ology for real-time group stress estimation. Our methogplo
consists of two sequential time periods, namelgguisition
period, to collect physiological data from group members
andstress detection periodo determine stress levels of each
member of the group as well as the source of stress in the
group via G-Causality. Next, we describe the entities of our
proposed distributed computing framework, which provides
the computation and communication infrastructure to eteecu
stress-detection algorithms in a distributed manner. \¥e al
show how the magnitude and direction of propagation of
stress can be determined for a group of people by exploiting (@)
G-Causality. At the end of this section, we discuss hopjg 3. sHIMMER sensors (a) Electrocardiogram (ECG) and
distributed comput_atlon of G—Ca_usallty is pen_‘ormed using (b) Galvanic Skin Response (GSR).
framework to monitor propagation of stress in a group.

) ) The acquisition period1{4) involves collecting data from

A. Methodology for Continuous Stress Detection all the members in a group for whom the stress has to be

Representative scenarioWe consider a scenario where anonitored. The GSR sensors measure the change in elec-
group of people require constant monitoring of physiolagictrodermal activity (increase in conductance) as sweatdglan
signals so to profile their stress levels and prevent anyaiskare stimulated for a hydrate solution. An ECG signal is a
fatal-health condition. This scenario can be seen in aamlit recorded tracing of the electrical activity generated bg th
base or workplace where high levels of stress can impdwaart. We derive various metrics from these signals to dfyant
decision making, or in a hospital or assisted-living fagili the stress experienced by a person. In our experiments we use
where constant monitoring of vital signs can help detect ampn-invasive GSR and ECG sensors provided by Shimmer
condition that requires immediate medical attention. Sensing [1]. Figure 3(a) and (b) show the ECG and GSR

Data Acquisition: Among the various physiological signalssensors, respectively. These sensors communicate dédte to t
such as Galvanic Skin Response (GSR), Electrocardiogramartphones via Bluetooth. The sampling rate of the GSR
(ECG), Electromyogram (EMG), body temperature, and resensors is set t60 Hz and to100 Hz for the ECG sensors.
piration, the authors in [12] have shown that skin conditgtiv If the application requires differentiation between méatad
metrics (derived from GSR) and heart rate metrics (derivgdhysical stress, then the activity data collected via a&coeh-
from ECG) are the most closely related to stress level of ater or annotations from the user (information providedhsy t
individual, hence, we use these two physiological signats fuser that s/he is experiencing high physical stress, exgrcise
stress detection. To detect stress in the people being anedjt or climbing stairs) can be used to detect the time period of
we measure physiological signals (here GSR and ECG) tfee physical activity. If the focus is only on mental strabgn
non-invasive sensors attached to their body such that theyttle application can choose to not consider data acquiredglur
not interfere with their daily activities. To enable contgus the time period that is annotated as high physical activity.
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TABLE I: Different phases of experiment to quantify stress.

4

] Num. of Time
Phases Types of Questions | Ques- : =
tions [min] 2
i
Phase-1 25 & =
Relaxed Stage (RX1) © s
Stroop Test 1 2 So £
Phase-2 (STR1) Logical Questions 3 4 E e
Difficulty Level: Low | Arithmetic Questions| 3 4 5 3
Memory Based 1 1 “ <
Phase-3 (STR2) Stroop Test 1 1 £
Difficulty Level: High | Logical Questions 2 2.5 2
Arithmetic Questions| 2 2.5
gf—RX}—)f—FTRl:—)f STR2 > <— Rz —>
Phase-4 3 °% 2 4 & s 10 12 14 15 18 20 |
Relaxed Stage (RX2) Time [m]

Fig. 4. Normalized GSR-ECG data of a person acquired during
the training phase.

Training Phase: In the training phase we record GSR

and ECG data for each person in the team. We consider the

stress experienced by a person into three categories, yjamel

Raw GSR data I Activity data I
S S SRR SR
low, medium, and high. We extract different features from

¢ S ~ y? ~
b {Cpreprocessig |
H 1
GSR and ECG data for different levels for stress for each Filtering b
. . . . !
person in the team. To collect data for different levels of:Upsampling = Peak detection L

= QRS detection = Median filtering
________________ s N

= Remove gaps
stress we have designed an experiment setup as shown in___~~ "~ Lo
Table I. The experiment is divided into four phases Where,"[
each phase consists of a set of questions and the difficulty, -~ . o
level of questions increase as we move to the higher phasejs: mir  « cvRR = LF
A phase can be further divided into stages. Phase-2 and 3 até>2t2- LB 2 HE . :
stress-inducing phases and consists of different stages,ew
each stage involves questions of a particular type like nmgmo
based, arithmetic, and logical questions. The first phdsasd?
1, starts with a relaxed stage (RX1) where the team members
are asked to take deep breaths and relax, typically lasting f
two minutes. The next phase Phase-2 (STR1) involves thregig. 5: Stress detection model (workflow) for peridg.
stages (Stroop Test, Logical Questions, Arithmetic Qoasi.
In Phase-2 (STR1) master gives Stroop test to team members,
where each member says the name of the color of the ward to 3 Mbps for Bluetooth 2.0, required for communication
on the screen and not what the word says. This stage typicdigtween sensors and smartphones.
lasts 1 minute. Next, 3 logic and 3 arithmetic questions Figure 4 shows normalized GSR data and normalized beats
are given by the master to the team members. Each stage minute Hpm) metric derived from ECG data of a person.
lasts for about nine minutes. In this phase the questions &eth GSR and ECG data are collected during different stages
simple and ample time is given to the team members. Tho$ the experiment (shown in Table 1) conducted during the
completes Phase-2 of the experiment. In the next phaseePhamining phase to extract features of different levels ofss.
3 (STR2), the difficulty level of questions increases ana alsVe consider RX1 and RX2 to be low stress inducing phases,
the time allocated for each question is decreased. The fi&tR1 to be medium stress inducing phase, and ST2 to be high
stage involves a memory-based question where team memis#irsss inducing phase. We observe significant increasetim bo
are shown a sequence of colors for a minute and, at the é88R andbpm data in the two phases STR1 and STR2. Also,
of the minute, they repeat the sequence back. The secovel observe that the value of both GSR angn increase as
stage is the Stroop test. In the next stage, a set of logie move from STR1 to STR2 phase. In the relaxed stage RX1,
and arithmetic questions are asked. This stage typicadis laon the other hand, we observe relatively low values of data
for seven minutes. In the next phase, Phase-4, the membad in RX2 we observe significant decrease in both GSR and
are asked to relax (RX2). This phase typically lasts forehré&pm data after the two stress inducing stages.
minutes. In our experiments we consider the acquisitioretim Workflow: In Fig. 5 we present our workflow which shows
period (I'4) to be up to 1 minute and computation time periothe sequence of tasks that need to be executed to quantify
(T¢) to be up to 30 seconds. The team consists of 5 peophe level of stress experienced by an individual. We first
and the device pool includes around 8-10 devices (static amiotain the physiological data (ECG, GSR, and activity data)
mobile devices). The data rate is up4dvibps for WiFi and from the sensor nodes attached to a person’s body. Next,

)
1
1
= Filtering :
1

1
1
1
1
1
! !
____________ -

_________________

[ Feature Extraction ]

Feature Extraction J\

= SCL = SRA
= DSCL = SRR
= SCLMAD = GSRA

Stress level
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we preprocess the data to remove any noise in the signal. 100
Preprocessing of ECG signal involves filtering the data to
remove noise, upsampling, QRS complex detection, and peak
to peak detection (involves estimation of R-R interval ie th
QRS complex). The GSR signal contains two-sided local noise
peaks that are caused by a physical disturbance of the ¢tontac
between the skin and the sensors, this is removed via median
filtering. Also, gaps in the GSR signal can be observed when
the fit between the skin and the sensors is not tight enough, as
the result the contact is continuously broken. This is doype b
checking the data for contiguous blocks of gaps and removing aof
them. Activity data (accelerometer or annotations from the
user) are filtered to remove noise. Next, step involves featu 30 2 3
extraction from the pre-processed data. For ECG data, we Time Elapsed [hr]
extract time-domain features such mean RR interval (mRR), @

mean heart rate (mHR), heart rate deviation (SDHR), RR
interval deviation (SDRR), coefficient of variance of RR
interval, root mean square successive difference (RMS&D),
well as frequency-domain features such as power spectrum of
very low frequency (VLF), power spectrum of low frequency
(LF), and power spectrum of high frequency (HF). Features
extracted from GSR data include mean skin conductance
level (SCL), skin conductance level deviation (DSCL), mean
absolute deviation of the skin conductance level (SCLMAD),
number of GSR responses (SRR), amplitude of GSR responses
in a window (SRA), sum of the area of GSR responses in a
window (GSRA). A supervised learning algorithm, such as the
K-Nearest Neighbor method (k-NN) [3], is employed for real-
time stress estimation of the people in the group. Once the _ 3
stress of each member of the team has been estimated, ther. Time Elapsed [hr]

the direction of propagation of stress in the team is quauatifi ®)
via G-Causality. Fig. 6: (a) Computation overheathcurred at various mobile

devices when stress is monitored for extended periods @f; tim
o _ (b) Communication overheadcurred when the physiological
B. Distributed Computing Framework data is transferred from the local nodes to a centralize@&nod

The execution of stress detection algorithms can be exécute
locally in the personal mobile device of the team members
or at a centralized location after receiving physiologidata not enough to monitor stress of an individual. In Fig. 6(b) we
from all the team members. However, both these strateg@serve the energy expenditure incurred at different @svic
have their disadvantages. Firstly, mobile devices haveg veaf the people in the group when stress of a group of people
limited battery capacity and executing stress detectig-al is monitored at a centralized node. The energy expenditure
rithms for extended period of time entails additional egyergncurred at the devices here is due to the communication
expenditure of the battery besides executing their esdentiverhead incurred when the data is transferred from them to a
functionalities (e.g., calling and texting). Secondlyatalized centralized location. The stress detection algorithm écated
execution suffers from a single point of failure. Also, insea at the centralized location. To overcome the obstacle dféin
the network data rate is low or the network connectivitgnergy faced by such devices, we envision fiml of mobile
suffers from frequent disconnections then significant bgad devices(laptops, smartphones, notebooks, and tablets) in the
is incurred by mobile devices (in terms of time and energy) wicinity can collaborate to form aelasticresource pool. Such
communicating application data to the centralized conmguti distributed pool provides its computation and commundzati
resource. capabilities so to enable applications that otherwise ccoul

Computation and communication overhead:In Fig. 6(a), not be supported because of limited battery and memory
we show how the residual capacity of different mobile deviceonstraints of a single device. To achieve our vision, we
varies over time when the stress detection algorithm are exgopose a distributed computing framework that utilizes th
cuted on them. All devices start witt00% battery capacity. local resources for data generation and processing, aivecel
We see that the two smartphones (HTC Desire and Motor@lgplication results in near real time without relying on any
Atrix) have discharge up t60 % in less tharb hours when external remote resource.
only stress detection algorithms are executed on them; thifFramework entities: The entities (i.e., the mobile devices
shows that the battery capacity of a single mobile device iis the vicinity) of the distributed computing framework may

!
I HTC Desire
[ Motorola Atrix

90 [ ]Samsung Galaxy Tab|

80

70
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Residual Energy [%]
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4 5

I HTC Desire
[ Motorola Atrix
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at any time play one or more of the following three logicdbad requests, allocation of workload tasks, and aggregati
roles: i)service requestemhich places requests for workloadf results. The optimizer identifies the number of service
that require additional data and/or computing resources fr providers available and determines the optimal distrdyuti
other devices, ii)service provider which can be a data of workload tasks among them. When a service requester
provider, resource provider, or both, and iii) ambitrator needs additional computing resources to process the data it
(usually, the base station), which processes the requests f generates, it submits a service request to the nearestadobit
the requesters, determines the set of service providets thad also specifies the maximum duration for which it is
will provide or process data, and distributes the workloagady to wait for a service response. The optimizer will shar
tasks among them. The service requester offloads (shares)tiie workload submitted by the requester among the available
task of executing compute-intensive algorithms to (witig t service providers based on one of several possible palicies
service providers by submitting service requests to one ofEnergy-aware resource allocation:To take into account
the arbitrators. Resource providers lend their computatio the different resource capabilities (in terms of residustdry
(CPU cycles), storage (volatile and non-volatile memoay)d capacity) and leverage heterogeneity in the vicinity, canfe-
communication (i.e., network interface capacity) researor work incorporates an energy-aware resource-allocatigimen
processing data. The arbitrator is aided by an energy-awaids engine selects the SPs and the number of tasks thatishoul
resource allocation engine that distributes the workl@estts be given to each SP. An arbitrator is aware via advertisesnent
optimally among the service providers. of the residual battery capacity of all devices in the reseur
Our framework applies to applications exhibitidgta par- pool. In this formulation, the objective of the arbitratsrthe
allelismas well as to applications exhibitingsk parallelism maximization of minimum residual battery capadtyall the
Data-parallel applications are also referred to as “enalsarr service providersmax min,, e}¢* [Wh], while ensuring that
ingly parallel” applications in which an independent set dhe service response is delivered withiti*® [s].
tasks, homogeneous but working on disjoint sets of data,

can be performed in parallel (but preceded and succeeded Maximize: min e,,”, @)
by pre- and post-processing tasks, respectively). Taskliph where, €/ = 2%V — (gdote 4 gcomp). 2)
applications, on the other hand, have a set of sequential as 5d

well as parallel tasks with pre-determined dependenciés an edata — _n_ . cnet, 3)
degree of parallelism. Also, our framework is endowed with 3600 s
severalautonomiccapabilities such as self organization, self er’"P =, - 36?)0 ot 4)

optimization, and self healing. The self-organizationataifity

(for handling service discovery and service request dsivdn (2), ef“ +eco is the amount of battery capacity drained
as well as for task distribution and management) is impartétieach service provider, 6 for a service providen depends
by the role-based architectural framework. It also faatitis On the amount of data it has to transmit [Bytes] as a data
interactions among the mobile entities for coordination arprovider) or aggregatex(- 3., | a;, [Bytes] as a resource
seamless switching among the three logical roles, nameWovider), and the availed communication capability, gibs,

service requesters, service providers, and arbitratdls [2 f net) T
Service discovery: Service discovery at the arbitrator is 64 = { (@, 7 N ) Un =5 (5)
achieved through service advertisements from the service flw- iz am) i uy =1

providers. Service advertisements will include inforroati
about the current position, amount of computing?(, in  C. Propagation of Stress via Granger Causality
terms of normalized CPU cycles), memory(*"* [Bytes]),
and communicatiom(’! [bps]) resources, the start’(*) and
end ¢2“!) times of the availability of those resources, and th

available battery capacity{?” [Wh]) at each service providerthe direction of its propagation in a group. A time series
n. The arbitrator is aware of the instantaneous power drayn_ (21,22 z1,...} is said to Granger-cause another

by the wor_k_load tasks of a specific application when r_unni fhe seriesy if including information about the past of
on a specific class of CPU and memory (together given l%anificantly increases the prediction accuracy of the emurr

t
C’Clomz.o [W]) as well as network@e [W]) resources at each valuey; of y in comparison to predicting it basexhly on the
service provider as the information about the differenetypf ast values of alone [6]. G-Causality was initially introduced

devices is known in advance. The arbitrators use the infor A [10], where the authors implemented it using two vector
tion from service advertisements of thé computing devices Auto-Regressive (AR) models.

to derive the followingR={r,,,} N xn [m]_,which conveys the The first, calledrestricted model

distancer,,,, between devices» andn, S={s,}1x~, Where

Granger-Causality is implemented as a part of the com-
prehensive stress detection algorithm (duriflg) to esti-
fhate the source of stress in a group of people as well as

sn € {1,0}, which conveys whether is a resource provider L L
or not, andD={d,, }1xn, Whered,, € {1,0}, which conveys e = Zaixtﬂ' o, Y= Zaﬂltﬁ' +me, (6)
whethern is a data provider or not. J=1 J=1

Workload management: Each arbitrator is composed ofcalculates how much two time series,andy, can be ‘ex-
two components, namelyyorkload managerand schedulet plained’ by their own pasta-; andy,-;, with j = 1,2,...),
optimizer The workload manager handles tracking of workresulting in residual error variances, = var(dy;) andl’'y =
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Team members

var(y1¢) (the model order is represented By which specifies = =
how many previous time points are taken into account, and the Wj W

T
length of the time series by, with P < T). l o
In the second model, callaghrestricted model @ @ Determine window over] .y, y
subject is stationary
P P
Ty = Zajxtfj + ijytfj + dat,
j=1 j=1
UINCD &> kD

P P
Yyt = E a;yi—j + E bjxt—j + Yo,
Jj=1 Jj=1 i
Selecting the model }Stage 3

.. . . . @ with minimum value
the prediction is based on the time series’ own sl the of AIC

Multiple linear Stage 2
regression problems

past of the other time series. This results in residual error
variancesAy, = war(de;) and T's = wvar(yz:). The linear
influence fromx to y, annotated asF_.y, and fromy to x,

i.e., Fy_x, can now be calculated as the ratio between tiég. 7: Workflow designed to execute G-Causality in our
variances of the residual error, i.e., distributed computing frameworlnéte that the output of the
stress workflow serves as input to the G-Causality worBflow

Calculate G-causality Stage 4
using min (AIC)

var(yit) T var(d1t) Ay
_ 2O g S WA A el
Fxoy =In var(yat) . Ty’ Fyox=In var(dat) . %82)

A reduction in error variance when including the past oé_ﬁ t tasks that h o b ied llel I
another time series results in a largératio. The difference merent fasks that nave to be execuiedparallel as we

G-Causality, i.e.F, .y—F, .. is then calculated to assess th s thesequentialsteps that have to be taken to determine G-
dominantdirection ofyinfcy>rm,ation flow ausality. Figure 7 shows the workflow diagram to compute

Selection of “time lag:” Selecting the time lag is an G-Causality. The G-Causality workflow takes as input the

important problem to compute the G-Causality. The estiomati OUTPUL of the stress workflow model, which estimates the

of AR models requires as a parameter the number of timset_ress experienced by each member of the team measured

lags P to include, i.e., the model order. Note that the decisi gver acquisition period (). In the first stage of the G-

o) : o
on the model order is critical as too few lags can lead to%ausallty workflow (Stage 1), as seen in Fig. 7, each sensor

poor representation of the data, whereas too many of them @é?r?e performs pre-processing steps and checkstéienarity

lead to problems in the model estimation [18]. Two criteria he stress data [10]. In case the data is not stationaey, th

have been introduced in the literature, namely the Akaiksgnsor nodes determine the time window over which the data

Information Criterion (AIC) [2] and the Bayesian Informati can .be .assumed stationary, 1.e., Whgn the !omt probability
Criterion (BIC) [17], in order to estimate the model order distribution does not change when shifted in time (and when,

Both these criteria help determine the quality of the model'consequently, pargmeters such as mean and variance also do
: not change over time and do not follow any trends). In the
For n variables we have, : )
second stage (Stage 2), each sensor node solves multigée lin

2Pn? regression problems, which aim at determining the model
AIC(P) = In || + T’ ) order as in (9). Next, each node receives data from all theroth
BIC(P) = In | In(T)Pn? nodes in the group and calculates the model order from each
(P) =In 32| + T : pair of nodes (Stage 3). As the last stage (Stage 4), each node

where X, is the noise covariance matrix of the unrestricte§€términes the G-Causality for each pair of group members.

model with | - | indicating the determinant of a matrix afd Note that the computation complexity to determine the
is the total number of datapoints used to fit the model to tlstress for a team increasksearly with the number of team
data. The firstterm in (9), i.e., the logarithm of the deteramt members. On the other hand, the computation complexity to
of the estimated noise covariance matiix|X.|), gives the determine the magnitude of G-Causality for a team increases
prediction error for a model of ordeP, while the second quadraticallywith the number members. This is because we
terms in both the models serve as a ‘penalty.’ Both AIC arebtimate G-Causality pair-wise, i.e, we calculate G-Cliysa
BIC differ as to how severely they penalize high-model osderbetween every two members of the team. To determine G-
with BIC more heavily penalizing higher model orders thagausality between any pair of team members, the compute-
AIC. Either AIC or BIC are calculated for a set of modeintensive task is the estimation of time lag, as this reguire
orders and the order that gives the minimum value of AIC @olving a linear regression problem. The dominant opemnatio
BIC is selected as the order of the AR model to determine @ a linear regression problem is matrix inversion, whose
Causality between two time series. The model with the lowestmplexity is given byO(L?), whereL is the length of the
value of AIC indicates that it is the best model, i.e., it flt€ t stress data of an individual. This shows that the computatio
data at hand better among all the models specified. time complexity of G-Causality between any two individuals

Distributed G-Causality: To enable distributed G- increases by a cubic factor with the length of the stress data
Causality calculation, we design a workflow that indicates t of an individual.
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of new people joining a team; (c) Time taken for the executibris-Causality by varying time lag and number of service
providers using different scheduling approaches.

IV. PERFORMANCEEVALUATION

TABLE II: Confusion matrix for stress detection algorithm.

We provide in this section the details about our testbed and

our experiment methodology; then, we present our expetimén
scenarios, which are aimed at detecting stress of indilsdu
in a team as well as the direction of propagation of stre

Predicted
Low Stress| Medium Stress| High Stress
Low Stress 3 2 0
5‘Ac:tual Medium Stress 1 4 0
High Stress 0 0 5

)

among the members of team. We quantify the benefits of our
proposed distributed computing framework to enable riead-t . . ]
stress detection for a group of people. We study how netwdd@Plet running Android 2.2 with MHz processor512 MB
connectivity impacts the performance of the distributeid,gr RAM and battery capacity o#000 mAh; and (iii) Nexus
and present on-line training of stress data as a candid@temartphone running Android OS 4.4.4 with Quad Core
for distributed computing. Next, we explain our experinant 2-3 GHz—Snap dragon processar, GB RAM and battery
setup to estimate direction of propagation of stress in agro c@pacity 0f2300 mAh.
We provide observations and inferences from the experisnent Accuracy of stress detection algorithm: In Table Il we
conducted, which corroborate the use of G-Causality asla tsbow the confusion matrix for the stress detection algorith

to estimate direction of propagation. We also explain how oMVe consider three classes of stress low, medium, and high. We
framework can implement distributed G-Causality and discushow the results for 15 different samples. We observe tteat th
detection accuracy of high level of stress by the stressteie
Experimental testbed: The testbed devices used in thélgorithm is the highest among all the classes. The F1 score

the benefits obtained via our framework.

experiment are: (i) HP Pavilion with intel i7 processeizB ~ which is given byF'l = 2-
RAM and battery capacity 6f400 mAh; (i) Samsung Galaxy and Recall=

tp
tp+fn?

precision-recall
precision-+recall’

where,tp is the number of true positive,

Precision= —2

tp+fp’
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fp is the number of false positive, anth is the number of be done to monitor stress. We show in Fig. 9(b) that, as the
false negatives. The F1 score can be interpreted as a weaightamber of people in the team increases, the execution time fo
average of the precision and recall, where an F1 score reactlassification also increases. Hence, in order to enable rea
its best value at 1 and worst score at 0. From the confusitime stress detection of these new people in the team, the
matrix we derive the following scores for our experiments: f classification process needs to be done via distributed Imobi
class low stress it i6.67, class medium stress it 573, and computing.
for class high stress it is.
B. G-Causality Results
Distributed computation of G-Causality: We compared
the performance of centralized execution of G-Causality
We present the performance of our distributed computingainst its distributed computation using our mobile cotimgu
grid in terms of energy and number of tasks executed f@amework. The metric for comparison is thime takento
estimate stress detection (executed in the time péfigdof a  execute G-Causality for a team of people.
group of people in comparison to a centralized approach. WeExperiments We compared the centralized execution
also study the performance of mobile grid when the data rgighere data is given from all nodes to a sink node for
of WiFi is varied. computation) (Schedule-1) with Round-Robin (in which we
Energy expenditure: In Fig. 8(a), we see the distributiondistribute an equal number of tasks to all the nodes) (Sdeedu
of tasks among the different devices in the resource pod. Th), and a schedule where we distribute a different number of
distribution of resources is done at the arbitrator. We see¢ ttasks to different nodes based on their computation capabil
different devices are given a different number of tasks ¢ver (Schedule-3). We present how the time taken for execut-
course of monitoring stress. This depends on computationgy group stress analysis varies as the number of resource
capability of devices and on their residual battery capacitroviders, model order, and number of members in the group
As a result, we see that different devices have been alldcatery. We considered that the data is trasmitted from all@ens
different number of tasks over time. In Fig. 8(b), we see thg the nearby devices via Bluetooth. The time taken by
the residual battery capacity of the devices in the resquoo¢  different devices to execute one unit task is a linear rejpas
is similar over a period of monitoring tasks. This is becausggroblem to estimate the model order. For more details on how
the goal of the resource allocation in the proposed mobitk gidevices are profiled and on the time taken to execute a unit
is to maximize the minimum residual capacity of the resourggsk of G-Causality the interested reader is referred td. [24
pool and hence tasks are allocated to devices based on the®bservations Figure 9(c) shows the performance of the
residual battery capacity. In Fig. 8(c), we show the minimuniree scheduling approaches in terms of workload compietio
percentage residual battery capacity of the resource pooltime. We see that the centralized execution (Schedule-1)
comparison to a centralized execution of the applicatidnclv  as expected takes the maximum amount of time followed
is here shown for a Nexus 5 Smartphone in the testbés Round-Robin (Schedule-2), whereas Schedule-3 takes the
We see that minimum percentage residual battery capacitymihimum amount of time. We divide our simulation into three
distributed mobile grid is always higher than that of celitesl  scenarios: in Scenario-1, we assume the number of SP to be
execution. After2 and3 hrs, we can see that the centralized;, the number of team members to beand the maximum
execution has a lower energy than that of mobile grid I a possible model order to b&0. In Scenario-2, we increase
and 33%, respectively. the maximum number of model order frohd to 20, and in
Impact of network connectivity: We vary the data rate Scenario-3 we increase the number of service providers from
of the local network to see its impact on the performance 6fto 10 with everything else remaining the same. The result
distributed mobile grid. We consider four data ratés 20, shows that the time taken is very sensitive to the model order
30, and40 Mbps. We observe that, as the data rate reduces, Scenario-4 we vary both number of service providers and
the minimum residual energy [%] consumed increases. Thisni®del order in order to compare the time taken by distritgutin
because, as the data rate decreases, it takes longer tmitrangsks under different schedules. We see that Schedulee8 tak
data to and receive results from the SPs, which consequenliig least amount of time. For Scenario-1 and 3, the time taken
leads to an increased energy consumption of mobile devickg. the centralized execution is not affected by the number
In Fig. 9(a) for25 tasks and a data rate @6 Mbps, we see of SPs and so it remains the same. Although both Round-
that the minimum residual energy in the mobile grid@39% Robin and Schedule-3 divide the task among SPs, Round-
lower than when the data rate i® Mbps. For 40 tasks and Robin performs worse than Schedule-3 because Schedule-3
a data rate ofl0 Mbps, we see that the minimum residualassigns tasks to SPs based on their computational capabilit
energy in the mobile grid i85% lower than when data rate iswhereas Round-Robin distributes an equal number of tasks to
10 Mbps. From the figure we observe that for high data ratesll the nodes, irrespective of their capabilities.

(around30 Mbps and above) the performance of the mobile Stress propagation: We now present results for stress
grid is very similar for different data rates. propagation in a group. As discussed earlier, we use G-
On-line training: In Figure 9(b) we show that on-line Causality to determine the extent and influence of stresa fro
training of new individuals in a team is also a good candidatsme group member to another. To quantify the mental group
for distributed mobile computing. For new individuals eirtg  stress, we design our experiments to have four phases, as

a team, the training and classification of stress data needstommarized in Table I.

A. Performance of Distributed Computing Framework
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Then, we studied the influence of G-Causality between the
two team members for different cases. We take the average
of all the experiments conducted for each case to show the
results for G-Causality. In Case-1, node B serves as master
(examiner) and conducts the test for node A (examinee). We
see that in this case, as shown in Fig. 10(b), the influence of
G-Causality from node B to node A is higher than from A to
B. Here, the dominant G-Causality direction is from B to A
and the magnitude of influence is, on averagey. As node
B conducts the test, the dominant direction of G-Causality
indicates that the examinee is influenced by the examirey, i.
that the stress propagates from node B to node A. In Case-2,

colorbar for p 0.30 / node A serves as the master (examiner) and node B serves as
© (model order) ) the slave (examinee), i.e., the roles are switched withesp
to the previous case. We observe that in this case, as shown
Fig. 10: G-Causality between two team members for differetit Fig. 10(c), the influence of G-Causality from node A to
cases over multiple experiments. Note that the size of thede B is higher than the influence from node B to A. The
node/circle indicates the stress experienced by each te@xagnitude of influence is on avera@e9. This indicates that
member, the top clockwise edge label shows magnitude rgde A being the examiner influences node B, i.e., that the
G-Causality from team member A to B, and the bottom edg&ess propagates from A to B. In Fig. 10(d) both nodes A
label shows the same from team member B to A; the edged B play the role of slaves and receive instruction from a
color (gray scale) indicates the G-Causality time lag (nhodeomputer (master), i.e., neither of the nodes interacts @ath
order) between stress data of team members (ranging fronather. As a result, we see that the values of G-Causality from
to 10 in our experiments). A to B and from B to A are very close. This indicates that
neither of the nodes has a predominant influence on the other.

ExperimentsIn our analysis, a team consists of two mem-
bers. One of the members of the team serves as a master
and assigns tasks to the other member. This simplified coniVe presented a real-time, in-situ stress detection for agro
figuration helps us understand the propagation of stress frof people via a distributed computing framework. In the eri
master to the other team member. We perform group stregsexperiments we also studied the direction of propagation
detection for three different cases: in Case-1, the firsinteaand magnitude of stress in a group, and analyzed how this
member serves as a master and the other one (slave) siness propagates over time. The results of this analy$s he
the master asks questions based on Table I. In Case-2 guentify the direction in which the stress propagates in a
second member serves as the master (i.e., they switch tlggbup. The work presented enables taking real-time dexdsio
roles in the experiment). In Case-3 both the two team membersd lays the foundation on how we can empower individuals
receive questions based on Table | from a laptop (or a perssho are in better condition (e.g., less stressed) by puttiem
who is not part of the experiment). Case-3 helps us analydgnamically, on a need-basis, in charge of a situation. Wilis
the propagation of stress when each team member perforfmedp improve productivity in highly stressful situation&el
task independently. During an experiment, the master massignilitary operations by, for example, reorganizing dynaaiic
guestions to the slave(s), keeps track of time, and at th@k&ndierarchy beyond existing ranks and roles.
the experiment informs the slave(s) about his/her perfonea  As the next step, we plan to study other emotions besides
We performed all the three cases thrice and in a random ordeess, e.g., fear, anxiety, and anger and to develop a etenpl
to gain statistical insights. Each repetition of a casernisiéal human mood elicitation system. This system will use other
as an ‘experiment. vital signs besides GSR and HR and will require processing a

We present our results of propagation of stress using eariety of models to estimate different emotions experehc
visually informativebubble diagramas depicted in Fig. 10(a), by people in a team in real time. We also plan to extend our
where each member is represented by a bubble/circle. Framddleware to communicate with remote resources (such as
any node: to j the following attributes exist: théhickness Clouds) and access historical medical records of the people
represents the magnitude of G-Causality from nod® ; the group in order to make more informed decisions. Last, but
(clockwise edge); theolor of the edge (gray scale) representsot least, we plan to conduct more experiments to understand
the model order number used to calculate the G-Causalibhgw estimation of direction of propagation of stress in artea
and thesizeof the bubble/circle represents the average stresan be to used as a feedback to improve group dynamics in
experienced by the person over the course of experimergal time. We also plan to use additional methods e.g., rhenta
The higher the influence of G-Causality, the thicker the edgenagery and virtual reality in the training phase to quantif
similarly, the higher the stress level experienced by a teastress of individuals. We also plan to integrate interrefat
member, the bigger the bubble size. We term the left node ‘ghips between people in a group from social networking sites
and the right node ‘B’ for the ease of understanding. in our analysis of Granger Causality.

V. CONCLUSION AND FUTURE WORK
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