
MobiDiC: Exploiting the Untapped Potential of

Mobile Distributed Computing via Approximation

Parul Pandey and Dario Pompili

Department of Electrical and Computer Engineering Rutgers University–New Brunswick, NJ, USA

E-mails: {parul_pandey, pompili}@cac.rutgers.edu

Abstract—Mobile computing is one of the largest untapped
reservoirs in today’s pervasive computing world as it has the
potential to enable a variety of in-situ, real-time applications. Yet,
this computing paradigm suffers when the available resources—
such as device battery, CPU cycles, memory, I/O data rate—
are limited. In this paper, the new paradigm of approximate
computing is proposed to harness such potential and to enable
real-time computation-intensive mobile applications in resource-
limited and uncertain environments. A reduction in time and
energy consumed by an application is obtained via approximate
computing by decreasing the amount of computation needed by
different tasks in an application; such improvement, however,
comes with the potential loss in accuracy. Hence, a Mobile
Distributed Computing framework, MobiDiC, is introduced to
determine offline the ‘approximable’ tasks in an application and
a light-weight algorithm is devised to select the approximate
version of the tasks in an application during run-time. The
effectiveness of the proposed approach is validated through
extensive simulation and testbed experiments by comparing
approximate versus exact-computation performance.

Index Terms—Mobile device clouds; Approximate computing;
Mobile perception application; Workflows.

I. INTRODUCTION

Vision: Technology has the power to adapt to the limita-

tions of human perceptions. With high-speed and time-lapse

photography, we can appreciate and understand processes not

visible to human eye (as either happening too fast or too

slowly); with the creation of overlays from multiple, spatially

separated data sources on Google Earth we can visualize

information not naturally visible to human senses; with deep-

learning techniques we can achieve leaps of improvement in

mature domains such as speech recognition [1]. All these tech-

nologies, which help us understand phenomena unimaginable

otherwise, have computation as their core infrastructure. We

envision mobile computing to become pervasive and bring all

these technologies anywhere and everywhere!

Motivation: The state of the art in mobile computing

falls short in achieving this vision on hand-held devices.

This computing paradigm, in fact, suffers when the available

resources—such as device battery, CPU cycles, memory, I/O

data rate—are limited. Considering the slow performance

improvement in mobile-device architecture and battery, it is

unlikely that the fundamental problems limiting a faster trend

will be solved in the near future. In spite of these limitations,

many computation-intensive applications from a variety of

domains such as computer vision (e.g., object recognition,

panorama stitching), machine learning (e.g., natural language

translators, speech recognizers), and artificial intelligence (e.g.,

gaming applications, online learning) are expected to work

seamlessly on smart hand-held devices and give results in real

time. Work on mobile cloud computing [2], [3] has been done

whereby the application execution is moved from the resource-

constrained mobile devices to powerful and centralized remote

computing platforms such as the Cloud. However, good con-

nectivity from the device to a WiFi network may not always

be possible. Although 3G has a near-ubiquitous coverage,

recent studies have shown that round-trip times are often

long and that communication links are bandwidth limited; the

former have been shown to be consistently on the order of

hundreds of milliseconds and in some cases even reaching

seconds [4]. This is unacceptable in real-time/interactive ap-

plications, which require low response times.

Our approach: We present MobiDiC, an “energy-" and

“accuracy-aware" framework that exploits the new paradigm

of approximate computing to enable near real-time mobile ap-

plications in resource-constrained environments. Approximate

computing reduces the amount of computation that an applica-

tion is expected to perform, as a result of which the execution

time, i.e., the makespan, as well as the energy consumption

reduce. The gain achieved via reduction in makespan and

energy expenditure, however, comes with a potential loss in the

accuracy of the results (within acceptable limits). We introduce

reduction in computational cost via two transformations—

namely, substitution and discarding—both of which can be

applied to the tasks in an application, where each task is

constituted by a subroutine/function along with a set of input

parameters. These transformations enable the paradigm of

approximate computing via the joint optimization of function

and parameter space of an application.

Our approximate-computing framework consists of an of-

fline and online phase (as shown in Fig. 1). In the offline phase,

we introduce a powerful workflow representation scheme to

determine which tasks in the application can be approximated;

we also provide statistical guarantees on the reduction in

makespan achieved by varying the application acceptable accu-

racy loss bound. The online phase is executed at run-time and

leverages the information obtained from the offline phase to

determine the accuracy loss to be incurred in order to meet the

application deadline given the computational capabilities of the

device. In this paper, we propose a light-weight probabilistic

algorithm to select approximated tasks that are most likely to

meet the application deadline within the estimated accuracy
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Fig. 1: Block diagram to represent MobiDiC approximate computing framework. The

offline phase determines the task(s) in an application which can be approximated. This

information is leveraged at run-time of the application along with application deadline

and acceptable accuracy loss bound.

loss bound and under run-time uncertainties.

We motivate and study the performance of approximate

computing via two well-known and broadly-applied recog-

nition algorithms, namely, Canny edge detection [5] and the

Scale Invariant Feature Transform (SIFT) [6]. Our results show

that an approximate implementation may perform significantly

better than the exact implementation of suboptimal algorithms.

We observed that when approximate computing is applied

the execution time decreases up to 40% at the price of only

5% in loss of accuracy. We also present results showing

the performance of approximate computing in an uncertain

distributed mobile environment via our experimental testbed.

Contribution: The following are our main contributions.

• MobiDiC, an energy- and accuracy-aware approximate-

computing framework to support real-time mobile appli-

cations in limited resource environments.

• An online algorithm that selects the approximated tasks

that should be executed to meet the application deadline

under uncertainties encountered at run-time.

• Validation of our approach through simulation and testbed

experiments comparing the performance of approximate

versus exact computing.

Paper outline: The remainder of this paper is organized as

follows. In Sect. II, we review the state of the art in traditional

mobile computing and approximate computing. In Sect. III, we

introduce the entities of our approximate-computing frame-

work. In Sect. IV, we discuss how approximate computing

can be applied to time-critical applications during run-time.

In Sect. V, we provide details of our experimental setup and

study the performance of approximate versus exact computing.

Finally, in Sect. VI, we conclude the paper.

II. RELATED WORK

We briefly review the state of the art in the area of mobile

computing and approximate computing. We explain the limita-

tions of these approaches and how our work differs from them.

Ours is the first work where the paradigm of approximate

computing is exploited to enable real-time applications in

mobile computing space.

Traditional mobile computing: Much work has been done

in the area of mobile computing with a focus on enabling mo-

bile applications in resource-limited environments. In mobile

cloud computing, researchers have focused on augmenting the

capabilities of mobile devices in the field by offloading costly

(compute and energy-intensive) tasks to dedicated wired-

grid [7] or cloud resources in a transparent manner. However,

these approaches are not suitable for enabling data-intensive

applications in real time due to prohibitive communication cost

and response time, significant energy footprint, and the curse

of extreme centralization. To circumvent these challenges,

mobile device cloud has been introduced [8]. This paradigm

was based on splitting the tasks in an application and executing

them in parallel on nearby mobile devices. However, the

local resource pool may suffer from scarcity of devices which

computation can be outsourced to, or from uncertain network

connectivity and device availability.

Approximate computing: Researchers have developed

energy-aware programming languages by introducing approx-

imation at different levels such as mathematical operations

and storage of data structures (in the form of unreliable

register, data cache, and main memory). One such language

is EnerJ [9], which allows the programmer to annotate data

as ‘approximate’ or ‘precise’. The system then automatically

maps approximate variables to low-power storage, uses low-

power operations, and applies more energy-efficient algorithms

provided by the programmer. In [10], [11], [12], the authors

employ various approximation techniques such as loop perfo-

ration and multiple implementations of tasks. Our work, on the

other hand, jointly applies different approximation techniques

to both tasks and input parameters of the application. Our

novel solution handles the uncertainties arising at run-time.

It also estimates the accuracy loss that should be incurred—

based on the resource availability and application deadline—

and approximates the tasks in such a way as to meet the

accuracy loss bound.

III. MobiDiC—APPROXIMATE COMPUTING FRAMEWORK

Our goal is to achieve dynamically a tradeoff between accu-

racy (or optimality of the results produced by an application)

and utilization of the available resources (such as battery, CPU

cycles, memory, and I/O data rate). We first discuss a structural

approach to approximation in mobile computing. Then, we

present the approximation techniques that can be applied to

different tasks in an application. We now define an offline

phase that helps us identify promising applications whose tasks

can be approximated so to gain significant benefits in energy

at the cost of marginal loss in accuracy.

A. Ontology of Approximation

Types of tasks: An application consists of the execution of

a set of tasks to obtain the required result. We consider a task

in an application to be “elementary" if it cannot be split further

into sub-tasks. Each task is represented by an executable

code/function (to represent a functionality that cannot be

split further) and a set of input parameters. We divide tasks

into two different categories, namely, approximable and non-

approximable. We assume that the information about the type



of task is provided by the application developer or via offline

profiling (discussed later).

Approximable: Tasks that can be approximated to achieve

significant savings in energy and/or execution time, with

however a potential loss of accuracy in the result.

Non-approximable: Tasks whose execution without any ap-

proximation is necessary for the success of the application, i.e.,

if any approximation technique were applied on these tasks,

the application would not generate meaningful results.

Types of approximations: We introduce approximation

through two transformations, namely substitution and discard-

ing, which are applied to different tasks (both at function

and input parameter) of the application. Specifically, the

former transforms the task(s) in exact computation with those

with lower degree of complexity; whereas the latter involves

removing certain task(s) of an application used for exact

computation. We now briefly explain these transformations.

Substitution: This transformation requires substitution of a

computation task (its execution code or input parameter) by a

simpler task. At the function level, this operation refers to the

substitution of a task in exact computation by a computation-

ally less-demanding task with potential loss in accuracy. This

requires the availability of multiple implementations of a task,

each with a different degree of complexity (e.g., 2D Gaussian

function serves as a filtering kernel in image processing;

however, it can be replaced with recursive Gaussian or box

filters, which are both computationally much less demanding

albeit they provide lower accuracy [13]). This transformation

requires domain knowledge.

At the parameter level, it refers to the scaling up or down

of the exact implementation value of a task parameter. A

substitution factor f determines the factor by which the value

of the approximate parameter varies with respect to (w.r.t.) the

exact parameter; for example, if the value of the parameter

in the case of exact computation is p, the new value via

substitution will be p ∗ f . For example, in Content Based

Image Retrieval (CBIR) applications, whose aim is to retrieve

image features via histogram analysis, the number of bins can

be decreased (here, f < 1) in such a way as to reduce the

computational cost at the cost of a decreased output accuracy.

Discarding: Applications consist of tasks that successively

improve upon the results obtained from previously executed

tasks. Discarding transformation involves not executing these

tasks so to reduce energy consumption at the cost, however,

of reduced accuracy. At the function level, if the user-specified

accuracy is achieved by a subset of the tasks, the application

can choose to skip the remaining task and terminate early;

hence, discarding certain redundant tasks can lead to signifi-

cant benefits in terms of energy and/or execution time.

At the parameter level, it refers to early termination or

skipping of number of iterations in a task. Skipping parameter

space was introduced in [10], where one of every n scheduled

iterations was executed, as a result of which the systems

performs fewer computations than its exact-implementation

counterpart. Discarding transformation can be applied to tra-

ditional Fast Fourier Transform (FFT)-based algorithms to get

Fig. 2: (Left) Exact workflow representation; (Right) Rich workflow constructed by

extending exact workflow to represent approximation transformations. Substitution trans-

formation is represented by multiple (alternate) tasks in a stage (e.g., tasks k1
1,1, k2

1,1,

are approximable tasks for task k1,1 in Stage 1); Discarding transformation is shown

by skipping a task in a certain stage (e.g., Task k2,2 in the exact workflow is skipped

in Stage 2 and k2
3,1 is executed immediately after k2

1,2).

suboptimal results with reduced computation cost [14].

Accuracy metric: In our framework we compare the accu-

racy or quality of output of an application by executing the

application via exact computation and by applying the afore-

mentioned approximate techniques. Different metrics such as

F1 Score (i.e., 2 Precision·Recall
Precision+Recall ), peak-signal-to-noise ratio or

any other application-domain metrics can be used to measure

the output accuracy. An exact-computation implementation

gives the highest accuracy achievable for that application.

The percentage loss in accuracy of the output when apply-

ing approximation w.r.t. exact computation is calculated as

T = Q−Q̂
Q

· 100, where Q is the accuracy of the output

obtained by exact implementation of the application and Q̂

is the accuracy of the output obtained by the approximate

implementation of the application.

B. Transformation of Workflows

The order of execution of multiple tasks in an application

can be specified by a workflow. Here, we first explain our

workflow representation for an exact computation implemen-

tation, and then show how such workflow is transformed for

an approximate-computation implementation. Transformation

of workflows is accomplished offline and is leveraged at run-

time to make decisions when the application is executed.

Exact-workflow representation: Let the exact workflow

G(V,E) be presented by a Directed Acyclic Graph (DAG), as

shown in Fig. 2(Left). The workflow is composed of multiple

stages with a set of tasks to be performed at each stage. It

is a graphical representation of the set of tasks, V = {ki,j},

where ki,j is the jth task in the ith stage. The edges in the

workflow indicate the dependencies between tasks. Tasks at a

stage cannot be executed unless all the tasks in the previous

stage have been completed as tasks at a stage accept data from

the previous stages. In the workflow representation, square
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Fig. 3: Illustration of (a) Optimized Rich-Workflow constructed from Rich Workflow (Fig. 2 (Right)) by reducing the task space; (b) Subgraphs formed for multiple independent

tasks of the optimized workflow. The subgraphs are created by Algorithm 2: Construct_Subgraphs and are executed only when the exact workflow is task-parallel with multiple

independent tasks at different stages of the workflow; (c) Approximate workflow extracted from Optimized Rich-workflow at run-time via Algorithm 3: Heuristic MP − SP.

nodes (�) represent the input data whereas circular nodes (©)

represent the computation tasks.

Determining approximable tasks: We explain now how to

identify approximable tasks in an application. For example, to

determine if Task k1,1 is approximable, we first apply discard-

ing transformation separately to each of its input parameter

and alternate functions available. We repeat the same by using

substitution transformation. Such procedure results in multiple

approximate versions of the task. Then, we replace Task k1,1
with one of its approximate versions while all other tasks in

the exact workflow are left unchanged. After such replacement,

we calculate the resulting makespan and accuracy (Q) of the

workflow. The exact-computation implementation gives the

highest accuracy results for the application. The speed-up (sp)

obtained from one of the approximate versions is calculated

by dividing the makespan of the approximate version by the

makespan associated with its exact implementation. This is

done for a large number of input data so to get the average

speed up (sp) and average accuracy (Q).

If any approximate version of Task k1,1 provides sp > 1
along with accuracy loss less than the acceptable loss TA,

then k1,1 is considered an approximable task. The approximate

versions that do not satisfy these constraints are discarded.

If none of the approximate versions of a task satisfies these

constraints, then that task is deemed non-approximable. If

multiple implementations of a task are available, then substitu-

tion transformation can be applied; otherwise, only discarding

transformation is performed.

Rich-workflow representation: An approximate instance of

an exact workflow is the one whose tasks satisfy the constraints

mentioned earlier. Collection of all the approximate instances

of an application forms a rich-workflow, GR(V R, ER). In

Fig. 2(Right), we can see that each approximable task (ki,j) in

the exact workflow has a corresponding approximate version

(kli,j). Each approximate version (kli,j) in the exact workflow is

selected via Algorithm 1 when sp > 1 and
|Q−Q̂|

Q
· 100 < TA.

Algorithm 1: Optimized Rich−Workflow (Offline)

Input: A-Application, B-set of approximate versions of all tasks in A,
I-Test data set, TA-acceptable accuracy loss of A

Output: GO(V O, EO)-Optimized rich-workflow
1 B̂ = ∅;

for b ∈ |B| do
for i ∈ I do

2 Replace an exact task in A with b;

3 Execute A with input i to get Q̂i and spi ;
end

4 Q̂ = 1

|I|

∑

i∈I

Q̂i , sp = 1

|I|

∑

i∈I

spi ;

if
|Q−Q̂|

Q
· 100 < TA ∧ sp > 1 then

5 B̂ = B̂ ∪ b;
end

end

6 Construct Rich-workflow using tasks in B̂ ;
7 Select Pareto-optimal approximate instances to form the Optimized

Rich-workflow;

The edge of the rich-workflow is represented as e
m,n,l
i,j,h =

{< khi,j , k
l
m,n >∈ ER}. Note that, in Fig. 2(Right), non-

approximable tasks are represented by triangular nodes (∇).

Reducing approximation space: We discard the approxi-

mate instances in the rich workflow that give accuracy loss less

than TA. To further reduce the approximation space in the rich

workflow, we select only those approximate instances of the

application that are Pareto Optimal. An approximate instance

is Pareto-optimal if there is no other approximate version of

that task that provides both better speed up and accuracy,

i.e., t1 is a Pareto-optimal approximate instance iff there is

not any other approximate instance t2 s.t. Q̂(t1) ≤ Q̂(t2) ∧
sp(t1) ≤ sp(t2), where at least one of the inequality is strict.

The collection of these approximate instances, which consist

of Pareto-optimal approximate instances that give percentage

accuracy loss w.r.t. exact computation less than TA, form an

optimized rich-workflow, i.e., GO(V O, EO). Figure 3(a) is an

example of optimized workflow formed by applying Pareto-

optimal test on Fig. 2(Right).



Need for an offline phase: The offline tools mentioned

above help the programmer identify the functions and input

parameters of the application that can benefit from various

approximation techniques. However, these tools are too heavy

to be used during run-time, as the cost of executing these tools

at run-time may be greater than the savings in time and energy

obtained from approximation of the application. As a result,

these tools are implemented only offline. Selection of Pareto-

optimal tasks reduces the complexity of online mechanisms as

it reduces the approximation space and helps the application

select optimal approximated tasks from a much smaller space

as well as meet the deadline constraints.

IV. REAL-TIME APPROXIMATE COMPUTING

Uncertainty at run-time arises when the execution time of

the application during run-time does not mirror the behavior

observed during the offline profiling. Execution time of tasks

depends on its implementation along with input parameters,

size of input data, input value, and architecture of the execution

location. For a given implementation of a task and input

parameter value, the task execution time can vary significantly

with input data; in certain situations, it can lead to missing the

application deadline. In order to enable approximate compu-

tation at run-time and get results in near real time, we should

be able to answer the following questions:

• Given the resources available, how much accuracy loss

should be incurred to provide meaningful results within

the application deadline?

• Which tasks should be executed to deliver results within

the acceptable accuracy loss while simultaneously meet-

ing such deadline?

• How does the uncertainty in the mobile distributed en-

vironment impact the performance gain of approximate

computing?

Determination of accuracy loss: Let sp be the amount of

speed up required to complete the execution of the application

within its specified deadline. Our goal is to specify to the user

at run-time how much accuracy loss needs to be incurred in

order to achieve this speed up, given the available computa-

tional resources. For this we fit the offline profiling data of the

Canny edge-detection application (black circles) with a non-

linear model, A · exp( spB ), which is shown by red-dotted line

in Fig 4. Goodness of fit statistics such as root mean square

error are used to estimate the coefficients A and B.

Construction of approximate workflow: Our next goal

is to determine the approximate instance of the optimized

workflow that meets both the makespan and the estimated

accuracy loss bound. Such approximate instance is called

an approximate workflow. We now present a light-weight

solution to determine such approximate workflow at run-time

by leveraging the results from offline profiling.

Each edge, e
m,n,l
i,j,h , of the optimized rich-workflow gives the

value of execution time of task klm,n, denoted as d(em,n,l
i,j,h ),

after task khi,j has been executed. For a particular device,

the offline profiling provides us with the execution time for

Fig. 4: Fitting offline profiling data with a non-linear model, A · exp( sp

B
), to estimate

at run-time the loss in accuracy that should be incurred to achieve a certain speed up.

running a task of an application with different input data,

resulting in varying execution times for the task. Hence, the

execution time of an edge can be defined as a real-valued

random variable in (0, +∞) varying with the input data set.

Theoretically, the distribution of d(e) for any edge e can be

captured by a Probability Density Function (PDF); however, in

reality, the PDF, fd(e), of d(e) is often unknown. Instead, a set

of samples d̂(e) = [d1, d2, . . . dW ], which are obtained from

offline profiling, are used to approximate the distribution of

d(e), where W is the number of trials in the offline profiling.

Each sample of d̂(e) has a Pr{d̂(e) = dw} ∈ (0, 1], where
W∑

w=1
Pr{d̂(e) = dw} = 1. For sake of compactness, we simply

denote d̂(e) as d(e).

A path is a set of consecutive edges that connect the source

(first task in the workflow) to the destination node (terminal

task in the workflow). The execution time (or makespan) of an

application is the sum of execution times of all the edges in a

path p and is given by D(p) =
∑

e
m,n,l

i,j,h
∈p

d(em,n,l
i,j,h ). As d(em,n,l

i,j,h )

is a random variable, D(p) is also a random variable. The de-

lay of a sample path, w, of D(p), associated with a single trial

(i.e., an input data) is given by
∑

e
m,n,l

i,j,h
∈p

w∈W

dw(e
m,n,l
i,j,h ). Each edge

is associated with W instances and there are multiple paths in

an application. Our goal is to create a light-weight run-time

algorithm; hence, we reduce the complexity of the problem

by transforming each edge d(e). We find the edge sample w

that has the highest probability, i.e., w := max pw(e), ∀e, and

substitute d(e) with dw(e). Given an application deadline M ,

our goal is to find a path p∗ = argmaxp Pr{D(p) ≤ M},

such that, for every other path p, the following holds,

Pr{D(p∗) ≤ M} ≥ Pr{D(p) ≤ M}, ∀p. (1)

The probability of a path is given as the product of the

probability of edges on that path. To solve this problem,

we transform each probability function as a cost function



TABLE I: Characteristics of the computing devices in our testbed.

Devices Samsung
Galaxy Tab

ZTE Avid
N9120

Huawei M931 Toshiba Satel-
lite

Dell Inspiron Acer Asprire

Type of devices Tablet Smartphone Smartphone Laptop Netbook Netbook

No. of devices 2 3 1 1 1 1

CPU 1GHz Dual-core
ARM

1.2GHz Dual-
core

1.5GHz Dual-
core

2.13 GHz i3 In-
tel

1.66 GHz N450 In-
tel

1.60 GHz N270 In-
tel

OS Android v4.0 Android v4.0 Android v4.0 Windows 7 Windows 7 Windows XP

RAM [GB] 1 0.512 1 4 1 2

Battery [mAh]/[V] 7,000/4 1,730/5 1,650/10.8 4,200/10.8 5,200/11.1 4,840/11.1

Algorithm 2: Construct_Subgraphs (Online)

Input: GO(V O, EO)
Output: Gsub- Subgraphs

1 Child set: Child ← ∅ ;
2 I contains all ith stages, where, j > 1 ;

for i′ ∈ I do
3 J = max j for i′th stage;

while j′ > J do
4 i_temp = i′ ;
5 Gsub(i

′, j′) = Gsub(i
′, j′) ∩ kh

i_temp,j′
∀h ;

6 i_temp = i_temp+ 1 ;
if i_temp 	∈ I then

7 Gsub(i
′, j′) = Gsub(i

′, j′) ∩ Child(khi_temp,1);
end
else

8 break ;
end

end
end

Algorithm 3: Heuristic MP− SP (Online)

Input: GO(V O, EO), K, M , child_val(v)-number of children of
node v, dh(e), ch(e)∀{e, h}

Output: GA(V A, EA)- Approximate workflow
1 count ← 1;
2 d(e) ← dw(e) & c(e) ← cw(e), where w := min cw(e) ∀ e;

while GO(V O, EO) 	= ∅ ∪ count < K do
3 [P,D] = Dijkstra(GO(V O, EO)) ;

for v ∈ P do
4 child_val(v) = child_val(v)− 1 ;

end
if D > M then

5 break ;
end
else

6 GA(V A, EA) ← GA(V A, EA) ∪ P ;
7 Remove tasks from GO(V O, EO) with child_val = 0;
8 count = count+ 1;

end
end

c() = − log(f(d(e))), which makes the components additive.

Now, as the probability associated with an edge increases, the

cost decreases; hence, our goal is to find the path, with the

lowest cost function, that simultaneously meets the makespan

constraints. We formulate this problem as a Restricted Shortest

Path (RSP) Problem. Given a network GO(V O, EO), exe-

cution time and cost associated with each edge in E, and

application deadline M , our goal is to find a path (p∗) that

o

o

o

o

o

o

o

o

o

o

o

(a) (b)

Fig. 5: Block diagram showing different tasks and parameters for object recognition using

(a) Canny edge detection and (b) Scale Invariant Feature Transform (SIFT). Each dashed

block contains multiple implementations of approximable task types (with varying degree

of complexities) and parameters.

solves the following problem,

min
∑

e
m,n,l

i,j,h
∈p∗

c(em,n,l
i,j,h ), s.t.

∑

e
m,n,l

i,j,h
∈p∗

d(em,n,l
i,j,h ) ≤ M. (2)

If our application is task parallel with independent parallel

tasks at certain stages, then we first construct subgraphs within

the optimized workflow such that, in each subgraphs, there is

only one task per stage. Algorithm 2, illustrated in Fig. 3(b),

shows our proposed algorithm to construct subgraphs with

one independent task per stage for task-parallel workflows.

Algorithm 3, illustrated in Fig. 3(c), shows our proposed

heuristic to solve the restricted shortest path problem presented

above and extracts the approximate workflow.

V. PERFORMANCE EVALUATION

This section is geared towards quantifying the gain of ap-

proximate over exact computing to support various computer-

vision algorithms. We present the results from offline profiling

by giving statistical bounds on the speed up achieved via

approximate computing along with the accuracy loss incurred.

Experimental testbed: We present the various elements

of our experimental testbed, which is shown in Table I. Our

testbed comprises of state-of-the-art, heterogeneous computing



TABLE II: Number of approximate instances selected in various stages of the offline

profiling for Canny edge-detection algorithm.

Accuracy
Loss [%]

All Work-
flows

Rich
Workflows

Optimized
Workflows

Discarded

20 150 55 18 130
40 150 59 18 126
65 150 82 23 98
80 150 97 24 82
100 150 97 24 82

TABLE III: Gain achieved by approximating tasks of Canny edge detection and SIFT.

Function/Parameter Range Accuracy
Loss [%]

Speed Up

C
a

n
n

y Threshold [0,1) 2.76 1.75 ± 0.01
Sigma [0,1] 0.01 1.14 ± 0.01
Kernel Size [3:11] 7.04 1.13 ± 0.012

S
IF

T

No. of Octaves [1,10] 0.7 ± 0.05 1.5 ± 0.022
No. of Spatial Bins [1,10] 0.8 ± 0.05 2.0 ± 0.025

No. of Orientation [1, 23] 0.6 ± 0.05 1.5 ± 0.034
No. of Level [1,10] 0.85 ± 0.06 2.0 ± 0.025

devices (tablets, smartphones, laptops, and notebooks) that

vary by type of device, platform, RAM, and processing power.

Applications implemented: We motivate and study the per-

formance of approximate computing via two well-known

and broadly-applied recognition algorithms, namely, Canny

edge detection [5] and the Scale Invariant Feature Transform

(SIFT) [6]. Figure 5 shows the different tasks and their

functions and input parameters that are approximated for the

two aforementioned algorithms. Both these exemplified appli-

cations extract different features from input data for evaluation.

We implemented both the applications on computing devices

in our testbed using the OpenCV library.

Input data set: We execute our application by using data

from the Berkeley image segmentation and benchmark

dataset [15]. For offline profiling we used 200 grayscale

images from the training data set; for run-time evaluation we

used 100 images from the test data set, both available in [15].

Resolution of each image is 481× 321 pixels.

Light-weight run-time algorithms: We implement in An-

droid the Heuristic MP− SP algorithm to select the approx-

imation tasks. The algorithms to construct the approximate

workflow need to be of low complexity because the gain in

reduction in makespan obtained from approximate computing

should not be eclipsed by the execution time of algorithms

to select the approximate workflow at run-time, which would

result in a paradox.

Offline-profiling: Our framework performs offline profiling

(as explained in Algorithm 1) of an application. In the profiling

phase, we execute the algorithms on the computing devices in

our testbed and use input data from the training dataset in [15].

In Table II, we observe how the number of approximate

instances in rich workflow and optimized workflow will vary

as the acceptable accuracy loss is varied. The number of

discarded workflows decreases as the percentage of acceptable

accuracy loss is increased; this is because the approximate

instances that achieve speed up, although at higher accuracy

loss are, also included. Table III quantifies the gain of applying

approximation transformations to various tasks and parameters

of the aforementioned applications.

Performance of approximate vs. exact computation:

Figs. 6(a) and (b) show the results of percentage loss in accu-

racy obtained when different levels of speed up are achieved

by applying approximation transformation to the application.

In Fig. 6(a), we see that for Toshiba we achieve a speed up

of 1.5 for 5% accuracy loss while for the other devices we

get around 10% of accuracy loss. The speed up of Toshiba

continues up to 1.9 but it saturates at 1.7 as for the other

devices. Similarly, in Fig. 6(b) we see that the speed up is 5
times when the percentage accuracy loss is 3% for Toshiba.

Similar trend is observed for the other devices. We can notice

that, although the makespan has decreased with different user-

specified accuracy bounds, it does not come at the cost of

significant loss in accuracy. From the approximate instances,

we can determine the Pareto-optimal instances to reduce the

approximable task space, as shown in Fig. 6(c). The red dots in

the figure indicate the Pareto Front for different applications.

Performance of our online algorithm: We compare the

performance of our algorithm Heuristic MP− SP, which is

required to construct an approximate workflow given the run-

time application deadline and accuracy loss. We assume the

value of count, i.e., the number of shortest paths considered

in Algorithm 3, to be 3. We compare the performance of our

solution, “Optimized-WF Probabilistic," against a determinis-

tic technique, where the delay value of an edge, d(e) in Algo-

rithm 3, is substituted with the mean delay (i.e., the average of

delays obtained from different trials executed during the offline

phase). We call this approach “Optimized-WF Average." We

also compare the performance when Algorithm 3 is applied on

a rich workflow instead of the optimized workflow. We call

this approach “Rich-WF Probabilistic." In Fig. 7(a), we see

that all the techniques are able to give the output within the

requested deadline. However, the difference in performance of

the techniques is evident in Fig. 7(b), where we see that our

Optimized-WF Probabilistic meets the percentage accuracy

loss as estimated by the non-linear model (shown in dotted

red line). Conversely, for the other two techniques a much

higher accuracy loss is incurred in comparison to the expected

one. The expected accuracy loss is estimated by the non-

linear model discussed in Sect. IV. This is because Rich-WF

Probabilistic considers all the approximate instances to select

the approximate workflow and misses selection of Pareto-

optimal instances, which have slightly higher makespan but

incur lower accuracy loss.

Overhead of online algorithm: The overhead of online Al-

gorithm 3 to select approximate workflow at run-time is of the

order of 6 ms. This is much lower than the reduction in gain in

makespan achieved by approximate computing, which is in the

order of hundreds of milliseconds to seconds, as depicted in

Fig. 6(a). Hence, our online approximation algorithm incurs

a very small penalty, i.e., its overhead is almost negligible

compared against the substantial performance benefits it brings

in terms of speed up.

Applicability of approximate computing: In Fig. 8(a),

we plot different regions of applicability of approximate



(a) (b) (c)

Fig. 6: Experiments. Percentage loss in accuracy versus speed-ups achieved by applying approximate computing techniques on (a) Canny edge detection and (b) SIFT algorithm;

(c) (Top) Pareto-optimal instances for Canny edge detection algorithm, (Bottom) Pareto-optimal instances for SIFT algorithm.

computing. If the user cannot tolerate any accuracy loss, e.g.,

face recognition application to unlock a device or a financial

website, then the user is ready to wait for a longer duration and

utilize higher resources without any sacrifice of quality, here,

exact computing can be applied (seen in the rightmost pink

region). Conversely, in interactive applications such as gaming

or object recognition, user expect quick response and accuracy

loss can be incurred without any perceivable degradation

of QoS to the user. Hence, they are good candidates for

approximate computing (seen in the leftmost blue region). The

situations where the mobile device is limited by battery or does

not have enough CPU cycles to give a crisp response to the

user, approximate computation is beneficial. Response from

cloud applications depend on the network latency; hence, in

situations with high cloud latency or with intermittent network

connectivity, approximate computing can be applied to give

low response time (seen in the middle green region).

Performance of approximate computing in uncertain

(a)

(b)
Fig. 7: Experiments. Comparison of probabilistic and deterministic framework in terms

of (a) makespan and (b) accuracy loss incurred.

mobile environment: Our goal is to study the benefits of

approximate computing in a Mobile Device Cloud (MDC)

where a resource-constrained mobile device offloads its tasks

to nearby devices. Uncertainty in a MDC may arise due to

device mobility, which determines the availability duration

of devices, and network connectivity, which determines the

communication cost of offloading tasks to nearby devices.

In our experiments the communication between devices in a

MDC is achieved using the AllJoyn framework [16], an open-

source, platform-independent software system that provides

an environment for distributed applications running across

different classes of devices. An AllJoyn thin app is designed

for energy-, memory-, and CPU-constrained devices and has a

very small memory footprint. Figure 9 shows the architecture

for our testbed, which is based on our work in [17]. The service

requester device contains the resource task mapper, which is

responsible to allocate task to different service providers. We

assume a fair, simple, and robust round-robin-based technique

to distribute tasks in an MDC.

We model the mobility patterns of devices in the proximity

as a normal distribution with mean availability duration of

devices varying with μ = {5, 100, 200} s and σ=5 s. Our first

result shows the gain obtained by the execution in a MDC

in comparison to centralized computation. We implement

the Canny edge-detection application on devices via exact

computation. In Fig. 8(b), we plot the time taken to execute

an application as the mean availability duration of the devices

in the MDC is varied. Interestingly, as the arrival duration

of devices increases, the rate at which tasks are completed

increases. Also, in spite of the offloading cost, MDCs finish

the execution faster than centralized exact computing. Next,

we compare the performance of exact versus approximate

execution in a MDC. In Fig. 8(c), we see that by applying

approximation we are able to achieve a much higher Frame

Per Second (FPS) rate. This is beneficial in case of interactive

applications as they are time-critical.

VI. CONCLUSION

We considered the new paradigm of approximate comput-

ing to exploit the untapped potential of mobile distributed



μ = 50s,Task Size = x

μ = 100s,Task Size = x

μ = 200s,Task Size = x

μ = 200s,Task Size = 2x

Centralized exact computing

MDC : μ = 50s,FPS = 0.2

AC : μ = 50s,FPS = 0.34

MDC : μ = 100s,FPS = 0.5

AC : μ = 100s,FPS = 0.8

(a) (b) (c)

Fig. 8: Experiments. (a) Scenarios where approximate computing can be beneficial in comparison to local exact computing and exact computing in the Cloud. The type of

computation depends on several factors such as type of application (interactive or non-interactive), accuracy requirements of the application, resources available, and network

latency; (b) Comparison of performance of exact computing in a centralized implementation vs. in a mobile device cloud in the presence of uncertainty in i) device availability due

to network disconnections and device mobility and ii) variable task sizes; (c) Comparison of performance of approximate computing vs. exact computing in a mobile device cloud

in the presence device mobility.

Fig. 9: Testbed to study the gain in performance of approximate computing over exact

computing in the presence of uncertainty experienced in a mobile environment.

computing and to enable real-time, pervasive applications in

a resource-constrained mobile device cloud. We introduced

a Mobile Distributed Computing framework, MobiDiC, that

determines offline the approximable tasks in an application

via a powerful workflow representation scheme. We validated

the effectiveness of the proposed approach through extensive

simulations and testbed experiments taking as motivating ex-

ample two different algorithms for interactive perceptive object

recognition, and observed that on our testbed their approximate

implementations perform better than their exact counterpart.
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