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Abstract—Interference Alignment and Cancelation (IAC) aims
at significantly improving the wireless channel capacity. Existing
algorithms for IAC are computationally intensive, which may
lead to long execution times. A practical implementation of IAC
is infeasible for fast-varying channels (when the coherence time
is small, e.g., less than 0.5 s). This is because a significant amount
of time has to be spent on channel estimation as IAC techniques
are extremely sensitive to the degree of accuracy of channel
estimates, thus leaving a very small portion of time for actual data
transmission. The collective computational capabilities of nodes
in the neighborhood can be exploited (for parallelism) to facilitate
the practical realization of compute-intensive IAC techniques.
A novel resource provisioning framework, which organizes the
mobile devices in the neighborhood to form an elastic resource
pool – a heterogeneous mobile computing grid – is presented. This
framework enables distributed execution of compute-intensive
communication algorithms like IAC. The effectiveness of the
approach is studied under different operational scenarios.

Index Terms—Interference alignment, wireless channel estima-
tion, distributed algorithms, mobile grid computing.

I. INTRODUCTION

The computation and communication capabilities of mobile

hand-held devices such as smart phones, tablets, netbooks, and

laptops have improved tremendously due to the advances in

microprocessor, storage, and wireless technologies. We pro-

pose a novel resource provisioning framework for organizing

the heterogeneous computing capabilities of mobile devices

in the neighborhood in order to form an elastic resource

pool – a mobile computing grid. This local computing grid

can be harnessed to enable innovative data- and compute-

intensive mobile applications, which are currently not enabled

due to the insufficient computing capabilities on individual

mobile devices (i.e., they cannot produce meaningful results

within realistic time bounds). In this paper, we explain how

our proposed framework can facilitate the practical realization

of compute-intensive communication optimization algorithms

such as Interference Alignment and Cancelation (IAC) for

Multiple Input Multiple Output (MIMO) systems.

IAC techniques, which have recently been developed for

terrestrial MIMO systems [1], [2], are aimed at significantly

This work was supported by the NSF CAREER Award No. OCI-1054234.

improving the channel capacity. The problem of increasing

spectrum efficiency using techniques like IAC is of great sig-

nificance because the rate of improvement in radio hardware to

use greater amount of spectrum resources is lower than the rate

at which the wireless capacity demand increases. Hence, we

need to exploit the available spectrum resources to the fullest.

Most of the prior work in the area of IAC considers unrealistic

assumptions such as infinite computational capabilities at the

participating nodes and perfect channel knowledge [3].

Many iterative algorithms for IAC have been proposed

recently [1], [4], [5], [6]. In [4], the authors present an iterative

algorithm that requires exchange of information between trans-

mitter and receiver until convergence. This algorithm depends

heavily on the initial conditions used and may converge to

a local minimum for certain initial conditions. Hence, the

initial conditions must be chosen carefully. If the time taken

for convergence of the algorithm is greater than the channel

coherence time (period of time for which the channel impulse

response is considered to be not varying), the results of the

algorithm will no longer be useful, and will lead to poor

Bit Error Rate (BER) performance. Also, the algorithm relies

on perfect synchronization between transmitter and receiver.

This is a very stringent condition in real-time applications.

Our aforementioned mobile grid computing framework en-

ables mobile devices to realize collaboratively this compute-

intensive IAC technique (iterative algorithm) so to produce

meaningful results in realistic time constraints imposed by the

time-varying wireless channel.

In this paper, we investigate the effectiveness of the pro-

posed framework for IAC via simulations under practical sce-

narios (realistic assumptions) such as small channel coherence

times and imperfect channel knowledge. We present a study on

the potential increase in the region of feasibility of compute-

intensive IAC techniques in time- and resource-constrained

scenarios. Investigation into the region of feasibility involves

studying the trade-off between computational gain (in terms of

speed up over stand-alone computation) versus communication

overhead (and delay) incurred as well as its effect on the

performance in terms of available wireless channel capacity for

data transmission. This trade-off helps us define the scenarios

in which the distributed realization of such IAC technique is

feasible. We consider an 802.11-based mesh-network scenario

– with no mobility in an indoor setting – and the mesh clients,
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Fig. 1. An interference network with K = 3 users (i.e., 3 Tx-Rx pairs) with
NT = NR = 2 (two antennae on each node).

e.g., laptops, mobile devices, and other wireless devices,

are part of the resource pool. The following are the main

contributions of this paper:

• We propose a technique to parallelize the IAC algorithm

using our framework and demonstrate the gains (in terms

of increase in channel capacity);

• We discuss the region of feasibility for practical realiza-

tion of these algorithms using our distributed framework.

The remainder of the paper is organized as follows. In

Sect. II, we present the background on IAC. In Sect. III,

we propose a mobile grid computing framework and explain

how we exploit it to realize distributed IAC. In Sect. IV, we

discuss the performance of our proposed approach. In Sect. V,

we draw conclusions and discuss how our framework can be

applied to enable or to improve a broad range of compute-

intensive communication applications.

II. INTERFERENCE ALIGNMENT THEORY

In this section, we present the necessary background on

the technique of IAC and discuss a representative compute-

intensive iterative algorithm for the same.

Interference Alignment: This technique provides an op-

portunity where each transmitter-receiver pair (“user”), in a

K-user system is simultaneously able to send at a data rate

equal to half of his interference-free channel capacity to

his desired receiver [7]. In a K-user system, the capacity

of a single-user with M antennas at both transmitter and

receiver, in the absence of all interference is Mlog(SNR) +
o(log(SNR)). In the case of IA, the network sum capacity

is KM
2

log(SNR) + o(log(SNR)), so the capacity per user

is M
2
log(SNR) + o(log(SNR)), i.e., each user gets half of

the interference-free channel capacity. The pre-log factor in

capacity is called Degree of Freedom (DoF), which is the

number of interference-free signaling dimensions available in

the system [1].

We consider a generic system model, a K-user interference

channel system (shown in Fig. 1) where K transmitters are

sending independent information to K receivers simultane-

ously so that besides a desired signal each receiver receives

interference from K−1 links. Each transmitter TX is equipped

with NT antennae and each receiver RX is equipped with NR

antennae. The channel between transmitter i and receiver j is

given as Hij). For the case of NT = NR = 2, Hij is shown

in Fig. 1, where each entry hij
kl is a complex number whose

magnitude represents the signal attenuation from transmitter

antenna k to receiver antenna l at each time slot (where

k, l ∈ 1, 2) and whose phase represents the propagation delay.

At transmitter i, xi is a di × 1 symbol vector where di is

the number of independent information streams or the degree

of freedom for the ith transmitter. The goal of interference

alignment is to design transmit precoding matrices Vi of

dimensions NT × di for each transmitter. The transmitted

signal is then given as si = Vixi of dimension NT × 1.

These matrices are chosen such that by encoding with these

matrices all the interfering signals lie in a subspace, linearly

independent of the subspace of the desired signal. The heart

of IA in spatial domain lies in constructing these transmit

precoding vectors. The received signal vector at receiver j is

given as,

rj = HjjVjxj +
K∑

i=1,i 6=j

HijVixi + nj, (1)

where the first term is the desired signal at receiver of user

j and the second term is the interference from all other

users. Here, nj is the NR× 1 Additive White Gaussian Noise

(AWGN) or thermal noise vector.

Interference Cancelation: To cancel the interference, we

have to project the received signal rj on the orthogonal space

of interference. The interference suppression filters (U) of

dimension NR × di are used to eliminate the interference

signal at the receiver and are given as Uj = null(HijVi) =
null([HkjVk]

†) (where † represents the Hermitian or con-

jugate transpose). The null space of a generic vector A is

denoted as null(A) and it is the set of all vectors x for which

Ax = 0. After applying the interference suppression filter, U†,

the received signal at receiver j is given as,

yj = Uj
†HjjVjxj +

K∑

i=1,i6=j

Uj
†HijVixi +Uj

†nj. (2)

In case of perfect IA, which is possible only when channel

knowledge is perfect, the interference aligns perfectly and

the interference suppression filter eliminates the interference

completely. The second term in (2) is the total interference at

receiver j. It is important to keep in mind that it is not possible

to solve the problem optimally when channel knowledge is

imperfect. Imperfect channel knowledge is mainly because of

error in channel estimation or when the channel has changed

since the time it was estimated. This may lead to residual

interference at the receiver even after interference cancelation.

A zero-forcing equalizer [8] is applied to (2) to remove the

effect of channel from the received signal.

Distributed Approach for IAC: In [4], the authors present

an iterative approach for IAC in MIMO systems to estimate the

transmit precoding vectors and interference suppression filters.

The total residual interference, called leakage interference, at
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Fig. 2. An overview of the envisioned mobile computing grid for optimizing
communications using compute-intensive algorithms.

the receiver of user j due to interference from all undesired

transmitters (k 6= j) is given by,

Ij = Tr[Uj
†QjUj], Qj =

K∑

k=1,k 6=j

Pk

dk
HkjVkVk

†Hkj
†,

(3)

where Pk is the transmit power at transmitter k. Each of the dj
columns of Uj are given by, Uj[n] = νn[Qj], n = 1, . . . , dj ,

where νn[Qj] is the eigenvector corresponding to the nth

smallest eigenvalue of Qj. In the beginning of the iterative

algorithm, the transmit precoding vectors are initialized with

some random values and interference suppression filters of

the original network are calculated using (3) . After deter-

mining Uj, the transmitter and receiver switch their roles.

This network is called a “reciprocal” network. The estimated

interference suppression filters (Uj) of the original network

now become the precoding vectors (
←−
Vj) for the reciprocal

network. The arrow at the top indicates that this vector belongs

to the reciprocal network. Similar to the original network,

in the reciprocal network (with transmitters and receivers

switched) the total interference leakage at receiver j due to in-

terference from all undesired transmitters (k 6= j) is given by,
←−
Ij = Tr[

←−
Uj

†←−Qj

←−
Uj]. The interference suppression filter (

←−
Uj)

for the receivers of the reciprocal network are calculated only

to be used as the transmit precoding vectors of the original

network in the next iteration. The iterative algorithm alternates

between the original and reciprocal networks with only the

receivers updating their interference suppression filters (in

every iteration) to minimize their total leakage interference.

Remember that the transmit precoding matrices (Vj) in the

reciprocal network (transmitter and receiver reversed) are the

interference suppression matrices (Uj computed earlier) in

the original network. This iteration is performed until con-

vergence. Although the algorithm is guaranteed to converge

it may not converge to global minimum due to non convex

nature of interference optimization problem [4].

III. PROPOSED SOLUTION

In this section, we present our framework [9] to realize

compute-intensive communication applications using a mobile

computing grid. The entities of the mobile computing grid

may at any time play one or more of the following three

logical roles: i) service requester, which places requests for

workloads that require additional data and/or computing re-

sources from other devices, ii) service provider, which can be

a data provider, resource provider, or both, and iii) a broker

(usually, the base station), which processes the requests from

the requesters, determines the set of service providers that

will provide or process data, and distributes the workload

tasks among them. The service requester offloads (shares)

the task of executing compute-intensive algorithms to (with)

the service providers by submitting service requests to one

of the brokers. Resource providers lend their computational

(CPU cycles), storage (volatile and non-volatile memory), and

communication (i.e., network interface capacity) resources for

processing data. The broker is aided by a novel energy-aware

resource allocation engine that will distribute the workload

tasks optimally among the service providers. Note that our

framework applies to applications exhibiting data parallelism

(in which data is distributed across different parallel computing

nodes that perform the same task) as well as to applications

exhibiting task parallelism (in which parallel computing nodes

may perform different tasks on the same or different data). We

realize the IAC technique using data parallelism.

We consider an indoor scenario where a few pairs of nodes

are communicating with each other – as shown in Fig. 2.

We assume that one of the communicating nodes serves as

the broker. The other wireless devices near these nodes serve

as service providers and offer their computational capabilities

to calculate precoding/decoding vectors with different initial

conditions. These initial conditions are selected randomly by

the broker and each service provider is given a unique initial

condition. The broker chooses equally spaced initial conditions

so as to ensure good coverage of the n-dimensional search

space (in case of an n-element V vector) and to avoid choosing

final precoding/decoding vectors based on convergence to a

local minimum. Once the service providers have computed

the precoding vectors, they send their results to the broker,

which ranks the results and selects the best precoding/decoding

vector pair based on a given criterion, i.e.,: 1) maximization of

sum-capacity, i.e., precoding vectors that maximize the total

capacity of the network are chosen, or 2) maximization of

fairness, i.e., precoding vectors that maximize fairness (calcu-

lated using Jain’s index [10]) are chosen. In the following, we

describe the mobile computing grid framework by explaining

the responsibilities of each node in the framework and how a

distributed implementation of IAC is realized using the same.

Distributed Mobile Grid Computing Framework: The

communicating nodes themselves and the nodes in their neigh-

borhood serve as service providers.

Service discovery: The broker is made aware of the avail-

ability of service providers through voluntary service adver-

tisements from the service providers. Service advertisements

include information about the current position, amount of

computing (in terms of normalized CPU cycles), memory (in

bytes), and communication (in bits per second) resources, the

start and end times of the availability of those resources, and

the amount of residual energy at each service provider. The
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broker will be aware of the energy consumption profile of

service provider as the information about the different types

of devices is known in advance.

Workload management: Each broker is composed of

two components, namely, workload manager and sched-

uler/optimizer, where the former handles tracking of workload

requests, allocation of workload tasks, and aggregation of

results; and the latter identifies the number of service providers

available and determines the optimal distribution of workload

tasks among them. When a service requester needs additional

computing resources to process the data it generates, it submits

a service request to the nearest broker and also specifies the

maximum duration for which it is ready to wait for a service

response. The optimizer will share the workload submitted by

the requester among the available service providers based on

one of several possible policies.

For example, a policy may aim at minimizing the battery

drain. This can be achieved through minimization of compu-

tational load on each individual service provider by exploiting

parallelism while incurring a very low communication cost.

Another policy may just place emphasis on response time

without considering battery drain. The set of service providers

and the duration for which each of their capabilities are availed

are determined by considering the trade-offs between i) the

energy cost for transferring the data locally from data providers

to the service providers and ii) the computational cost for

availing the computational capabilities of the service providers

for servicing the request and for generating the final response.

IAC Realization in the Proposed Framework: All the

nodes that need to transmit data (Tx1, Tx2, Tx3) submit

a service request to the broker, i.e., the nodes request the

broker to identify and involve other nodes in the vicinity for

estimating the precoding/decoding vectors based on different

initial conditions. The broker determines the number of service

providers to involve (and, hence, the number of initial condi-

tions and iterations) based on information about NT , NR, and

DoF at the different transmitting and receiving nodes.

Algorithm Profiling: The aforementioned iterative algo-

rithm is computationally intensive as it involves eigen-vector

calculations and multiple matrix multiplications. We profiled

the algorithm as specified by the authors and profiled its exe-

cution time per iteration (estimation of the transmit precoding

matrices and interference suppression filter) on a mobile device

(MD1: 1GHz dual-core ARM processor with 1GB RAM). The

execution time (on a mobile device) per iteration increases

with the number of antenna elements and DoF. The time

taken by mobile device MD1 for one iteration to estimate the

precoding and interference suppression vectors in one iteration

with NT = NR = 3 is approximately 24 ms. The coherence

time of the channel, i.e., the duration for which the channel is

considered stationary, is assumed to be 1 s. Signals received

within a particular coherence time interval have correlation

greater than 0.5. In indoor wireless networks the coherence

time is of the order of few hundred milliseconds to few

seconds [11]. To perform channel estimation (conventional
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number of iterations).

Least Square approach) and estimation of precoding/decoding

vector from the iterative algorithm (maximum 10 iterations)

will take approximately 250 ms, leaving 750 ms for the

reuse of these vectors. Currently, in our evaluations, we allow

each service provider to estimate only one set of precod-

ing/decoding vectors for all K users (starting from only one

initial condition per user). This is because we assume that

the computing power of mobile devices is similar to that

of MD1’s. This number can be increased further (effectively

increasing the total number of initial conditions used) in future

when the computing power on devices increases further.

Leveraging the Framework: Consider the case in which

the channel coherence time Tc is 1 s. If we want to limit

the fraction of time for which the IAC algorithm runs in

one Tc, then the number of iterations that can be performed

decreases progressively for higher-order MIMO systems (with

higher number of NT , NR, and DoF). As this algorithm starts

with an arbitrary initial condition, better performance (in terms

of minimizing the residual interference) is guaranteed with a

higher number of iterations, which is infeasible under fast-

varying channel conditions (Tc < 0.5 s). However, this can

be compensated for by simultaneously estimating multiple

candidate precoding/interference-suppression filters and by

picking the ‘best’ Vk,Uk pair (∀ k = 1 . . .K).

In Fig. 3, we see that for each service provider as the

number of iterations is increased the spectral efficiency also

increases. This is because of the lower convergence error in the

estimation of precoding/decoding vectors when the algorithm

is run for higher number of iterations. As the number of

iteration is increased from 1 to 11, w.r.t. one SP the spectral

efficiency increases by 3 bps/Hz. For a 20 MHz-system, this

translates to an increase of 60 Mbps in capacity. Considering

the time taken per iteration is 24 ms, we can at maximum do

10-15 iterations for MD1 leaving the residual time for channel

estimation and coordination. For a 802.11n system (64 QAM,

5/6 code rate, 2.4 GHz carrier frequency), the time taken for

coordination (distribution of result among participating nodes)

is 0.5 ms in case of 8 service providers. Our framework

83



����� �����

��������	
����� ���
������	
�����

� � � � � �

�

�

�

�����������

���	�����
��

��	����������

���	�����
��

������������ � �������	������!�

����

�

�

�

����������������������
�"����
#���� �

��	��������������������
�"�

$����
���
���
��%�	�������

��� � ������&���%��'

���

���	��
�����(��
�

�

Fig. 4. An overview of our approach to distributed data-parallel IAC;
sequence of events happening at every Service Provider (SP).

provides a unique opportunity to execute the algorithm over

multiple initial conditions (in a data parallel manner) where

each service provider uses a unique initial condition and

the the best set of Vk,Uk pair is chosen from them. In

Fig. 3, as the number of service providers increases the

spectral efficiency increases. This is because we get to choose

those precoding/decoding vectors which maximize the spectral

efficiency. In this figure as the number of SPs are increased

from 1 to 11 for 1 iteration the spectral efficiency increases

by 5 bps/Hz. For a 20 MHz-system, this translates to an

increase of 100 Mbps in capacity. If the coherence time of the

channel is very small (say less than 0.25 s), then performing

channel estimation and estimation of precoding vector from

the iterative algorithm using the distributed realization of the

algorithm is not possible. On the other hand, if the coherence

time is of the order of multiple seconds (say greater than 3 s),
each receiver or transmitter node can itself try the algorithm

with different initial conditions and converge to an optimum

result. Hence, the region of feasibility of our algorithm lies

when the coherence time of the algorithm is of the order of

few hundred milliseconds to few seconds.

Sequence of Events at a Service Provider (SP): Fig. 4

shows the sequence of events happening at every service

provider over time. We identify two distinct phases, which

alternate over time: i) the estimation phase and ii) the data-

transmission phase. The duration of the two phases together

lasts for the channel coherence time Tc. Figure 4 also shows

the sequence of events (numbered 1 through 6) within the esti-

mation phase. Events 1 and 2 correspond to channel coefficient

estimation and sharing. Event 3 corresponds to calculation of

Vk, Uk pairs for all K active users using the aforementioned

iterative procedure. The number of iterations is determined

by the fraction of the channel coherence time that we are

ready to spend in the estimation of precoding/interference-

suppression vectors. Here, the number of iteration is set

less than 5 as it corresponds to 25% of the channel coher-

ence time of 1 s. Events 4 and 5 correspond to the steps

where the service providers collaborate to determine the best

precoding/interference-suppression-vector pairs. Once the best

vector pairs are determined, the corresponding transmitter and

receiver nodes are provided with the vectors (corresponds to

Event 6), which are then used in the actual data transmission.

IV. PERFORMANCE EVALUATION

We implemented the IAC algorithm using our framework

and studied its performance via simulations. Our simulations

are geared towards understanding the performance gain (in

terms of achievable spectral efficiency). We consider a 20
MHz-channel as in 802.11n system. The modulation scheme

used is 64-QAM and we used a 5/6 coding rate. Each node

has NT = NR = 2 antennae and transmits only one

information symbol at a time, unless specified otherwise. We

model the channel gains using log-distance path loss model

[12], according to which the received power (in dBm) at

a distance d (in meters) from the transmitter is given by

Pr(d) = Pro − 10γ log(d) + Xσ , where Pro is the loss

at distance of 1 m from the transmitter, Xσ represents flat

fading and is modeled as a normal random variable with

standard deviation σ. The path-loss exponent depends on the

building and the environment type. We assume an indoor

environment setting with γ set to 3 and σ set to 7 [13]. The

transmit power in our simulation is varied from 0.1 to 2 W.

The topology of the network in all our simulations is fixed.

We consider that service providers and communicating nodes

have computational capability similar to MD1. The coherence

time of the channel is assumed to be 1 s and, hence, we

consider a maximum of 10 iterations corresponding to MD1’s

computational capabilities.

Figure 5(a) shows a comparison ( in terms of Jain’s fairness

index) of min-max and maximum sum rate technique when

choosing the precoding and interference suppression filters for

DoF equal to 1 and 2 as the power is varied. We can see

that max-min technique gives higher fairness than max sum-

rate technique. The broker can choose the precoding/decoding

vectors for transmission by using one of the two techniques.

We consider that each receiver node estimates the channel

from itself to all the transmitters. Each receiver then broad-

casts its channel estimates to all the service providers. The

error in estimation of channel coefficients can be modeled

as H̄ = H + eΩ. We consider the channel estimation error

model as in [14], where eΩ is the estimation error, which is

uncorrelated with H. The entries of Ω are i.i.d. zero-mean

complex Gaussian with unity variance and e is the measure of

how accurate the channel estimation is. We consider variation

in BER with Signal to Noise Ratio (SNR) as a metric to

evaluate the framework performance. Figure 5(b) shows the

variation of BER as the SNR is varied. We see that BER

increases as the channel estimation error e increases. The

value of e is varied from 0 to 0.2, where the value of 0
indicates perfect channel knowledge. Figure 5(c) shows the

variation in spectral efficiency with variation in power for

different degrees of freedom. For DoF=2, as the measure of

channel error (e) increases from 0 to 0.2, the spectral efficiency

decreases by 70% for a power of 2 W. For DoF=1, the spectral

efficiency decrease by 75%. Both the metrics, BER and

Spectral Efficiency, indicate the sensitivity of IAC technique

to the accuracy of channel knowledge. Hence, performance

of a practical implementation of IAC depends largely on the

quality of channel estimates. Figure 6 shows the variation of
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Fig. 6. BER vs SNR (K = 3, NT = NR = 2) with imperfect channel
knowledge (e = 0.2).

BER with SNR as the number of SPs is increased from 1 to

11. The channel knowledge is assumed to be imperfect. The

value of e in the channel model is assumed to be 0.2. We can

see that as the number of service provider increases, the BER

decreases. This is because of the selection of precoding vectors

received from multiple service by employing multiple initial

conditions. The performance of the algorithm by employing 11
SPs, as seen in Fig. 6, is very similar to the BER performance

in the case of perfect channel knowledge (e = 0), as seen in

Fig. 5(b).

V. CONCLUSIONS AND FUTURE WORK

We proposed a mobile computing framework to imple-

ment Interference Alignment and Cancelation (IAC) tech-

nique, which is a compute-intensive communication realization

problem. We presented the feasibility of IAC in an actual

mesh static environment. We studied how the performance of

our distributive realization varies as the number of service

providers and algorithm iterations are varied. We observed

that the efficiency of IAC largely depends on the quality of

channel estimates and presented an analysis of IAC under our

distributed computing framework when the channel knowledge

is not perfect. We saw that under our framework the perfor-

mance of IAC is better than existing IAC algorithms in case

of imperfect channel knowledge. As future work, we plan to

distribute joint channel estimation and estimation of precoding

technique using our framework. We also plan to incorporate

intelligence at the receiver (broker) to select the best set of

service provider from the nodes in the neighborhood.
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