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a b s t r a c t

Mobile computing is one of the largest untapped reservoirs in today’s pervasive computing
world as it has the potential to enable a variety of in-situ, real-time applications. Yet, this
computing paradigm suffers when the available resources – such as energy in the network,
CPU cycles,memory, I/O data rate – are limited. In this article, the newparadigmof approxi-
mate computing is proposed to harness suchpotential and to enable real-time computation-
intensivemobile applications in resource-limited and uncertain environments. A reduction
in time and energy consumed by an application is obtained via approximate computing by
decreasing the amount of computation needed; such improvement, however, comes with
the potential loss in accuracy. Hence, a Mobile Distributed Computing framework, is in-
troduced to determine offline the ‘approximable’ tasks in an application and a light-weight
online algorithm is devised to select the approximate version of the tasks in an application
during run time. The effectiveness of the proposed approach is validated through extensive
simulation and testbed experiments by comparing approximate versus exact-computation
performance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Vision: Technology has the power to adapt to the limitations of human perceptions. With high-speed and time-lapse
photography, we can appreciate and understand processes not visible to human eye (as either happening too fast or too
slowly); with the creation of overlays from multiple, spatially separated data sources on Google Earth, we can visualize
information not naturally visible to human senses; with deep-learning techniques we can achieve leaps of improvement in
mature domains such as speech recognition [2]. All these technologies, which help us understand phenomena unimaginable
otherwise, have computation as their core infrastructure. We envision mobile computing to become pervasive and bring all
these technologies anywhere and everywhere!

Motivation: The state of the art in mobile computing falls short in achieving this vision on hand-held devices. This
computing paradigm, in fact, suffers when the available resources – such as device battery, CPU cycles, memory, I/O data
rate – are limited. Considering the slow performance improvement in mobile-device architecture and battery, it is unlikely
that the fundamental problems limiting a faster trend will be solved in the near future. In spite of these limitations, many
computation-intensive applications from a variety of domains such as computer vision (e.g., object recognition, panorama

✩ A preliminary version of this work appeared in the Proc. of the IEEE International Conference on Pervasive Computing and Communications (PerCom),
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Fig. 1. Block diagram to represent an approximate computing framework. The offline phase determines the task(s) in an application that can be
approximated. This information is leveraged at run time of the application along with application deadline and acceptable accuracy loss bound.

stitching), machine learning (e.g., natural language translators, speech recognizers), and artificial intelligence (e.g., gaming
applications, online learning) are expected to work seamlessly on smart hand-held devices and give results in real time.

Work on mobile cloud computing [3–6] has been done whereby the application execution is moved from the resource-
constrained mobile devices to powerful and centralized remote computing platforms such as the Cloud. However, good
connectivity from the device to a WiFi network may not always be possible. Although 3G has a near-ubiquitous coverage,
recent studies have shown that round-trip times are often long and that communication links are bandwidth limited; the
former have been shown to be consistently on the order of hundreds of milliseconds and in some cases even reaching
seconds [7]. This is unacceptable in real-time/interactive applications, which require low response times.

Our approach: We present a ‘‘deadline-’’ and ‘‘accuracy-aware’’ framework that exploits the new paradigm of
approximate computing to enable near real-time mobile applications in resource-constrained environments. Approximate
computing reduces the amount of computation that an application is expected to perform, as a result of which the execution
time, i.e., themakespan, as well as the energy consumption reduce. The gain achieved via reduction inmakespan and energy
expenditure, however, comes with a potential loss in the accuracy of the results (within acceptable limits) [8]. We introduce
reduction in computational cost via two transformations – namely, substitution and discarding – both ofwhich can be applied
to the tasks in an application, where each task is constituted by a subroutine/function along with a set of input parameters.
These transformations enable the paradigm of approximate computing via the joint optimization of function and parameter
space of an application. We also present a complementary approach where we introduce approximation in the input data
by reducing its spatial resolution and study the performance benefits thereby obtained.

Our approximate-computing framework consists of an offline and onlinephase (as shown in Fig. 1). In the offline phase,we
introduce a powerfulworkflow representation scheme to determinewhich tasks in the application can be approximated;we
also provide statistical guarantees on the reduction in makespan achieved by varying the application acceptable accuracy
loss bound. The online phase is executed at run time and leverages the information obtained from the offline phase to
determine the accuracy loss to be incurred in order to meet the application deadline given the computational capabilities of
the device. In this work, we propose a light-weight probabilistic algorithm to select approximated tasks that are most likely
to meet the application deadline within the estimated accuracy loss bound and under run-time uncertainties.

We motivate and study the performance of approximate computing via three well-known and broadly-applied
recognition algorithms, namely, Canny edge detection [9], Scale Invariant Feature Transform (SIFT) [10], and Histogram
of Gradients (HoG) [11]. Our results show that an approximate implementation may perform significantly better than the
exact implementation of suboptimal algorithms. We observed that when approximate computing is applied the execution
time decreases up to 40% at the price of only 5% in loss of accuracy. We also present results showing the performance
of approximate computing in an uncertain distributed mobile environment via our experimental testbed. A preliminary
version of thiswork appeared in the Proc. of the IEEE International Conference on Pervasive Computing and Communications
(PerCom), Sydney, Australia, March 2015 [1].

Contributions: The following are our main contributions.

• A deadline- and accuracy-aware approximate-computing framework to support real-timemobile applications in limited
resource environments.
• We introduce approximation in the application via two techniques, namely, joint optimization of function and parameter

space as well as by reducing the spatial resolution of the input data of the application.
• An online algorithm that selects the approximated tasks that should be executed to meet the application deadline under

uncertainties encountered at run time.
• Validation of our approach through simulation and testbed experiments comparing the performance of approximate

versus exact computing.

Outline: The remainder of this article is organized as follows. In Section 2, we review the state of the art in traditional
mobile computing and approximate computing. In Section 3, we introduce the entities of our approximate-computing
framework. In Section 4, we discuss how approximate computing can be applied to time-critical applications during run
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time. In Section 5, we provide details of our experimental setup and study the performance of approximate versus exact
computing. Finally, in Section 6, we conclude the article.

2. Related work

We briefly review the state of the art in the area of approximate computing. We explain the limitations of these
approaches and how our work differs from them. Ours is the first work where the paradigm of approximate computing
is exploited to enable real-time applications in mobile computing space.

Earlier work in the field on Artificial Intelligence (AI) involved worked on imprecise computations [12,13] and anytime
algorithms [14,15] that focused on offering a tradeoff between execution time and accuracy of an application. However,
this works assume a very rigid structure of task for the applications on which imprecise computations can be implied.
Each task can be expressed to have an optional and mandatory part. They solve a scheduling problem to minimize the
average time of optional tasks of the application subject to the constraint that the total error be less than an acceptable
value. Our work is not related to approximation algorithms [16], which are a class of algorithms that deal with intractable
problems that focus on reducing asymptotic complexity (for very large values of input size). Rather, our work focuses on
improving run-time behavior of applications that admit a polynomial-time solution but require to give real-time behavior in
the presence of limited availability of resources. Authors in [17,18] haveworked on estimating the resources available for an
application in terms of CPU cycles; if the resource supply is not enough tomeet the accuracy requirements, a lower accuracy
implementation of the algorithm that can be achieved given the resources available is selected. This work, however, does
not provide any technique to perform approximation on a general application.

Recently researchers have developed energy-aware programming languages by introducing approximation at different
levels such asmathematical operations and storage of data structures (in the formof unreliable register, data cache, andmain
memory). One such language is EnerJ [19], which allows the programmer to annotate data as ‘approximate’ or ‘precise’. The
system then automaticallymaps approximate variables to low-power storage, uses low-power operations, and appliesmore
energy-efficient algorithms provided by the programmer.

In [20,21] authors studied applications from various domains which are amenable to approximation. In [22] the authors
introduce approximation in various common computation patterns such asmean, sum, andminimum sum and quantify the
loss in accuracy. In [23–25], the authors employ various approximation techniques such as loop perforation and multiple
implementations of tasks. Our work, on the other hand, jointly applies different approximation techniques to both tasks and
input parameters of the application. Our novel solution handles the uncertainties arising at run time. It also estimates the
accuracy loss that should be incurred – based on the resource availability and application deadline – and approximates the
tasks in such a way as to meet the accuracy loss bound.

3. Approximate computing framework

Our goal is to achieve dynamically a tradeoff between accuracy (or optimality of the results produced by an application)
and utilization of the available resources (such as battery, CPU cycles,memory, and I/O data rate).We first discuss a structural
approach to approximation in mobile computing. Then, we present the approximation techniques that can be applied to
different tasks in an application. We first define an offline phase that helps us identify promising applications whose tasks
can be approximated so to gain significant benefits in energy at the cost of marginal loss in accuracy.

3.1. Ontology of approximation

Types of tasks: An application consists of the execution of a set of tasks to obtain the required result. We consider a task
in an application to be ‘‘elementary’’ if it cannot be split further into sub-tasks. Each task is represented by an executable
code/function (to represent a functionality that cannot be split further) and a set of input parameters. We divide tasks into
two different categories, namely, approximable and non-approximable. We assume that the information about the type of
task is provided by the application developer or via offline profiling (discussed later).
Approximable: Tasks that can be approximated to achieve significant savings in energy and/or execution time, with however
a potential loss of accuracy in the result.
Non-approximable: Tasks whose execution without any approximation is necessary for the success of the application, i.e., if
any approximation technique were applied on these tasks, the application would not generate meaningful results.

Types of approximations: We introduce approximation through two transformations, namely substitution and
discarding, which are applied to different tasks (both at function and input parameter) of the application. Specifically, the
former transforms the task(s) in exact computationwith thosewith lower degree of complexity; whereas the latter involves
removing certain task(s) of an application used for exact computation. We now briefly explain these transformations.
Substitution: This transformation requires substitution of a computation task (its execution code or input parameter) by a
simpler task. At the function level, this operation refers to the substitution of a task in exact computation by a computationally
less-demanding taskwith potential loss in accuracy. This requires the availability ofmultiple implementations of a task, each
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Table 1
Various tasks and parameters in different applications that can be substituted to simpler versions.

Algorithm Function Function version Parameter

Substitution

Canny/HoG

Smoothing filter
Box filter

Kernel sizeRecursive filter
Median filter

Gradient

LoG
Roberts operator
Sobel operator
Prewitt operator

HoG/SIFT/CBIR Histogram Number of orientation bins

HoG HoG descriptor Cell and block size
Normalization Type of norm

Canny Thinning Threshold

SIFT
Number of octaves
Number of spatial bins
Number of levels

Table 2
Various tasks and parameters in different applications that can be discarded.

Algorithm Function Parameter

Discarding

Canny/HoG Smoothing filter
Canny Thinning
HoG Normalization
Query matching Number of matches
FFT Number of iteration

with a different degree of complexity (e.g., 2D Gaussian function serves as a filtering kernel in image processing; however,
it can be replaced with recursive Gaussian or box filters, which are both computationally much less demanding albeit they
provide lower accuracy [26]). This transformation requires domain knowledge.

At the parameter level, it refers to the scaling up or down of the exact implementation value of a task parameter. A
substitution factor f determines the factor by which the value of the approximate parameter varies with respect to (w.r.t.)
the exact parameter; for example, if the value of the parameter in the case of exact computation is p, the new value via
substitution will be p ∗ f . For example, in Content Based Image Retrieval (CBIR) applications, whose aim is to retrieve
image features via histogram analysis, the number of bins can be decreased (here, f < 1) in such a way as to reduce
the computational cost at the cost of a decreased output accuracy. We introduce examples of various applications where
substitution transformation can be applied in Table 1.
Discarding: Applications consist of tasks that successively improve upon the results obtained from previously executed
tasks. Discarding transformation involves not executing these tasks so to reduce energy consumption at the cost, however,
of reduced accuracy. At the function level, if the user-specified accuracy is achieved by a subset of the tasks, the application
can choose to skip the remaining task and terminate early; hence, discarding certain redundant tasks can lead to significant
benefits in terms of energy and/or execution time.

At the parameter level, it refers to early termination or skipping of number of iterations in a task. Skipping parameter
space was introduced in [23], where only one of every nth scheduled iterations was in fact executed, as a result of which
the systems performs fewer computations than its exact-implementation counterpart. Discarding transformation can be
applied to traditional Fast Fourier Transform (FFT)-based algorithms to get suboptimal results with reduced computation
cost [27]. We introduce examples of various applications where discarding transformation can be applied in Table 2.

Accuracy metric: In our framework we compare the accuracy or quality of output of an application by executing the
application via exact computation and by applying the aforementioned approximate techniques. Different metrics such as
F1 Score (i.e., 2 Precision·Recall

Precision+Recall ), peak-signal-to-noise ratio or any other application-domain metrics can be used to measure
the output accuracy. An exact-computation implementation gives the highest accuracy achievable for that application.
The percentage loss in accuracy of the output when applying approximation w.r.t. exact computation is calculated as
T = Q−Q̂

Q · 100, where Q is the accuracy of the output obtained by exact implementation of the application and Q̂ is the
accuracy of the output obtained by the approximate implementation of the application.

3.2. Transformation of workflows

The order of execution of multiple tasks in an application can be specified by a workflow. Here, we first explain our
workflow representation for an exact computation implementation, and then show how such workflow is transformed for
an approximate-computation implementation. Transformation of workflows is accomplished offline and is leveraged at
run-time to make decisions when the application is executed.
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Fig. 2. (Left) Exactworkflow representation; (Right) Richworkflow constructed by extending exactworkflow to represent approximation transformations.
Substitution transformation is represented by multiple (alternate) tasks in a stage (e.g., tasks k11,1 , k

2
1,1 , are approximable tasks for task k1,1 in Stage 1);

Discarding transformation is shown by skipping a task in a certain stage (e.g., Task k2,2 in the exact workflow is skipped in Stage 2 and k23,1 is executed
immediately after k21,2).

Exact-workflow representation: Let the exact workflow G(V , E) be presented by a Directed Acyclic Graph (DAG), as shown
in Fig. 2 (Left). The workflow is composed of multiple stages with a set of tasks to be performed at each stage. It is a
graphical representation of the set of tasks, V = {ki,j}, where ki,j is the jth task in the ith stage. The edges in the workflow
indicate the dependencies between tasks. Tasks at a stage cannot be executed unless all the tasks in the previous stage have
been completed as tasks at a stage accept data from the previous stages. In the workflow representation, square nodes (�)
represent the input data whereas circular nodes (⃝) represent the computation tasks.

Determining approximable tasks: We explain now how to identify approximable tasks in an application. For example, to
determine if Task k1,1 is approximable, we first apply discarding transformation separately to each of its input parameters
and alternate functions available. We repeat the same by using substitution transformation. Such procedure results in
multiple approximate versions of the task. Then, we replace Task k1,1 with one of its approximate versions while all other
tasks in the exact workflow are left unchanged. After such replacement, we calculate the resulting makespan and accuracy
(Q ) of the workflow. The exact-computation implementation gives the highest accuracy results for the application.

The speed-up (sp) obtained from one of the approximate versions is calculated by dividing the makespan of the
approximate version by the makespan associated with its exact implementation. This is done for a large number of input
data so to get the average speed up (sp) and average accuracy (Q ).

If any approximate version of Task k1,1 provides sp > 1 along with accuracy loss less than the acceptable loss TA, then
k1,1 is considered an approximable task. The approximate versions that do not satisfy these constraints are discarded.
If none of the approximate versions of a task satisfies these constraints, then that task is deemed non-approximable. If
multiple implementations of a task are available, then substitution transformation can be applied; otherwise, only discarding
transformation is performed.

Rich-workflow representation: An approximate instance of an exact workflow is the onewhose tasks satisfy the constraints
mentioned earlier. The collection of all the approximate instances of an application forms a rich-workflow, GR(V R, ER). In
Fig. 2 (Right), we can see that each approximable task (ki,j) in the exact workflow has a corresponding approximate version
(kli,j). Each approximate version (kli,j) in the exact workflow is selected via Algorithm 1 when sp > 1 and Q < TA. The edge
of the rich-workflow is represented as em,n,l

i,j,h = {< khi,j, k
l
m,n >∈ ER

}. Note that, in Fig. 2 (Right), non-approximable tasks are
represented by triangular nodes (∇).

Reducing approximation space: We discard the approximate instances in the rich workflow that give accuracy loss less
than TA. To further reduce the approximation space in the rich workflow, we select only those approximate instances of
the application that are Pareto Optimal. An approximate instance is Pareto-optimal if there is no other approximate version
of that task that provides both better speed up and accuracy, i.e., t1 is a Pareto-optimal approximate instance iff it there is
not any other approximate instance t2 s.t. Q̂ (t1) ≤ Q̂ (t2) ∧ sp(t1) ≤ sp(t2), where at least one of the inequalities is strict.
The collection of these approximate instances, which consist of Pareto-optimal approximate instances that give percentage
accuracy loss w.r.t. exact computation less than TA, form an optimized rich-workflow, i.e., GO(VO, EO). Fig. 3(a) is an example
of optimized workflow formed by applying Pareto-optimal test on Fig. 2 (Right).

3.3. Approximation via input data

So far we have focused on introducing approximation in the application at the algorithm level by manipulating tasks in
the applications. Specifically, we have focused on approximation via joint optimization of function and parameters of the
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Algorithm 1: Optimized Rich−Workflow (Offline)
Input: A-Application, B-set of approximate versions of all tasks in A, I-Test data set, TA-acceptable

accuracy loss of A
Output: GO(V O, EO)-Optimized rich-workflow

1 B̂ = ∅;
for b ∈ |B| do

for i ∈ I do
2 Replace an exact task in Awith b;
3 Execute A with input i to get Q̂i and spi ;

end
4 Q̂ = 1

|I|


i∈I

Q̂i , sp = 1
|I|


i∈I

spi ;

if |Q−Q̂ |
Q
· 100 < TA ∧ sp > 1 then

5 B̂ = B̂ ∪ b;
end

end
6 Construct Rich-workflow using tasks in B̂ ;
7 Select Pareto-optimal approximate instances to form the Optimized Rich-workflow;

Fig. 3. Illustration of (a) Optimized Rich-Workflow constructed from Rich Workflow (Fig. 2 (Right)) by reducing the task space; (b) Subgraphs formed for
multiple independent tasks starting at Stage-1 of the exact workflow (Fig. 2 (Left)). The subgraphs are created by Algorithm 2: Construct_Subgraphs and
are executed only when the exact workflow is task-parallel with multiple independent tasks at different stages of the workflow; (c) Approximate workflow
extracted from Optimized Rich-workflow at run-time.

tasks in an application. We will focus now on how approximation of input data can bring additional benefits to compute-
intensive applications. Subsampling of images to reduce the image resolution/size has been implemented in literature via a
variety of resampling filters such as point filters, box filter, and median filters of input data. To prevent aliasing arising due
to subsampling, the image needs to be pre-filtered (e.g., with Gaussian filter) before applying resampling filters [28]. In point
filters, one pixel value within a local neighborhood is chosen (perhaps randomly) to be representative of its surroundings.
This method is computationally simple but can lead to poor results if the sampling neighborhoods are too large. The second
method interpolates among pixel values within a neighborhood by taking a statistical sample (such as the mean or median)
of the local intensity values. In this paper we use nearest-neighbor interpolation method for subsampling.

Our goal is to reduce the amount of input data processed by the application such that the overall execution time of the
application reduces. To this end,we reduce the spatial resolution of input data via various subsampling techniques and study
how reduction in spatial resolution impacts the accuracy of the application while bringing simultaneous gains by reducing
the makespan. The reduction of input data required for processing can be done at various levels of the input data, i.e., at the
raw data (pixel level) and information level (after extracting semantic knowledge from the image), and can be divided into
three main classes:

• Data-dependent approximation;
• Information-dependent approximation;
• Hybrid approximation.

In this work we consider the data-dependent approximation and will leave the last two classes for future work.
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Fig. 4. Fitting offline profiling data with a non-linear model, A · exp( sp
B ), to estimate at run-time the loss in accuracy that should be incurred to achieve a

certain speed up.

Need for an offline phase: The offline tools mentioned above help the programmer identify the subroutines and input
parameters of the application that can benefit from various approximation techniques. However, these tools are too heavy
to be used during run-time, as the cost of executing these tools at run-time may paradoxically be greater than the savings
in time and energy obtained from approximation of the application. As a result, these tools are implemented only offline.
Selection of Pareto-optimal tasks reduces the complexity of online mechanisms as it reduces the approximation space and
helps the application select optimal approximated tasks from amuch smaller space aswell asmeet the deadline constraints.

4. Real-time approximate computing

Uncertainty at run-time arises when the execution time of the application during run-time does not mirror the behavior
observed during the offline profiling. Execution time of tasks depends on its implementation along with input parameters,
size of input data, input value, and architecture of the execution location. For a given implementation of a task and input
parameter value, the task execution time can vary significantly with input data; in certain situations, it can lead to missing
the application deadline. In order to enable approximate computation at run-time and get results in near real time, we
should be able to answer the following questions:

• Given the resources available, how much accuracy loss should be incurred to provide meaningful results within the
application deadline?
• Which tasks should be executed to deliver results within the acceptable accuracy loss while simultaneously meeting

such deadline?
• How does the uncertainty in the mobile distributed environment impact the performance gain of approximate

computing?

Determination of accuracy loss: Let sp be the amount of speed up required to complete the execution of the application
within its specified deadline. Our goal is to specify to the user at run-time how much accuracy loss needs to be incurred in
order to achieve this speed up, given the available computational resources. For this we fit the offline profiling data of the
Canny edge-detection application (black circles) with a non-linear model, A · exp( sp

B ), which is shown by red-dotted line in
Fig. 4. Goodness of fit statistics such as root mean square error are used to estimate the coefficients A and B.

Construction of approximate workflow: Our next goal is to determine the approximate instance of the optimized
workflow that meets both the makespan and the estimated accuracy loss bound. Such approximate instance is called an
approximate workflow. We now present a light-weight solution to determine such approximate workflow at run-time by
leveraging the results from offline profiling.

Each edge, em,n,l
i,j,h , of the optimized rich-workflow gives the value of execution time of task klm,n, denoted as d(em,n,l

i,j,h ), after
task khi,j has been executed. For a particular device, the offline profiling provides us with the execution time for running a
task of an application with different input data, resulting in varying execution times for the task. Hence, the execution time
of an edge can be defined as a real-valued random variable in (0, +∞) varying with the input data set. Theoretically, the
distribution of d(e) for any edge e can be captured by a Probability Density Function (PDF); however, in reality, the PDF,
fd(e), of d(e) is often unknown. Instead, a set of samples d̂(e) = [d1, d2, . . . , dW ], which are obtained from offline profiling,
are used to approximate the distribution of d(e), whereW is the number of trials in the offline profiling. Each sample of d̂(e)
has a Pr{d̂(e) = dw} ∈ (0, 1], where

W
w=1 Pr{d̂(e) = dw} = 1. For sake of compactness, we simply denote d̂(e) as d(e).

A path is a set of consecutive edges that connect the source (first task in the workflow) to the destination node (terminal
task in the workflow). The execution time (or makespan) of an application is the sum of execution times of all the edges in a
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Algorithm 2: Construct_Subgraphs (Online)

Input: GO(V O, EO)
Output: Gsub- Subgraphs

1 Child set: Child←∅ ;
2 I contains all ith stages, where, j > 1 ;
for i′ ∈ I do

3 J = max j for i′th stage;
while j′ > J do

4 i_temp = i′ ;
5 Gsub(i′, j′) = Gsub(i′, j′) ∩ khi_temp,j′∀h ;
6 i_temp = i_temp+ 1 ;

if i_temp /∈ I then
7 Gsub(i′, j′) = Gsub(i′, j′) ∩ Child(khi_temp,1);

end
else

8 break ;
end

end
end

Algorithm 3: Heuristic MP− SP (Online)

Input: GO(V O, EO), k,M , S, child_val(v)-number of children of node v, dh(e), ph(e)∀{e, h}
Output: GA(V A, EA)- Approximate workflow

1 count← 1;
2 d(e)← dw(e) & p(e)← pw(e), where w := max pw(e) ∀ e;
while GO(V O, EO) ≠ ∅ ∪ count < k do

3 [P,D]= Dijkstra(GO(V O, EO)) ;
for v ∈ P do

4 child_val(v) = child_val(v)− 1 ;
end
if D > M then

5 break ;
end
else

6 GA(V A, EA)← GA(V A, EA) ∪ P ;
7 Remove tasks from GO(V O, EO) with child_val = 0;
8 count = count + 1;

end
end

path p and is given by D(p) =


em,n,l
i,j,h ∈p

d(em,n,l
i,j,h ). As d(em,n,l

i,j,h ) is a random variable, D(p) is also a random variable. The delay

of a sample path, w, of D(p), associated with a single trial (i.e., an input data) is given by


em,n,l
i,j,h ∈p
w∈W

dw(em,n,l
i,j,h ).

Each edge is associated with W instances and there are multiple path edges in an application. Our goal is to create a
light-weight run-time algorithm; hence, we reduce the complexity of the problem by transforming each edge d(e). We find
the edge sample w that has the highest probability, i.e., w := max pw(e), ∀e, and substitute d(e) with dw(e).

Now, given an application-specific deadlineM , our goal is to find the optimal path p∗ = argmaxp Pr{D(p) ≤ M}, i.e., that
path for which, for every other path p, it holds,

Pr{D(p∗) ≤ M} ≥ Pr{D(p) ≤ M}, ∀p. (1)

The probability of a path is given as the product of the probability of edges on that path. To solve this problem, we
transform each probability function as a cost function c() = − log(f (d(e))), whichmakes the components additive. Now, as
the probability associated with an edge increases, the cost decreases; hence, our goal is to find the path, with the lowest cost
function, that simultaneously meets the makespan constraints. We formulate this problem as a Restricted Shortest Path (RSP)
Problem. Given a network GO(VO, EO), execution time and cost associated with each edge in E, and application deadline M ,
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Table 3
Characteristics of the computing devices in our testbed.

Devices Samsung galaxy tab ZTE Avid N9120 Huawei M931 Toshiba
satellite

Dell inspiron Acer asprire

Type of devices Tablet Smart phone Smart phone Laptop Netbook Netbook
No. of devices 2 3 1 1 1 1
CPU 1 GHz Dual-core

ARM
1.2 GHz
Dual-core

1.5 GHz
Dual-core

2.13 GHz
i3 Intel

1.66 GHz
N450 Intel

1.60 GHz N270 Intel

OS Android v4.0 Android v4.0 Android v4.0 Windows 7 Windows 7 Windows XP
RAM [GB] 1 0.512 1 4 1 2
Battery [mAh]/[V] 7000/4 1730/5 1650/10.8 4200/10.8 5200/11.1 4840/11.1

Fig. 5. Block diagram showing different tasks and parameters for object recognition using (a) Canny edge detection, (b) Scale Invariant Feature Transform
(SIFT), and (c) Histogram of Gradients (HoG). Each dashed block contains multiple implementations of approximable task types (with varying degree of
complexities) and parameters.

our goal is to find a path (p∗) that solves the following problem,

min


em,n,l
i,j,h ∈p

∗

c(em,n,l
i,j,h ), s.t.


em,n,l
i,j,h ∈p

∗

d(em,n,l
i,j,h ) ≤ M. (2)

If our application is task parallel with independent parallel tasks at certain stages, then we first construct subgraphs
within the optimized workflow such that, in each subgraphs, there is only one task per stage. Algorithm 2, illustrated in
Fig. 3(b), shows our proposed algorithm to construct subgraphs with one independent task per stage for task-parallel work-
flows. Algorithm 3, illustrated in Fig. 3(c), shows our proposed heuristic to solve the restricted shortest path problem pre-
sented above and extracts the approximate workflow.

5. Performance evaluation

This section is geared towards quantifying the gain of approximate computing over exact computing to support various
computer-vision algorithms. We first present the results from offline profiling giving statistical bounds on the speed up
achieved via approximate computing along with the accuracy loss incurred. We employ an open-source software system,
AllJoyn [29], to implement a distributed computing environment.

Experimental testbed: We present the various elements of our experimental testbed, which is shown in Table 3. Our
testbed comprises of state-of-the-art, heterogeneous computing devices (tablets, smartphones, laptops, and notebooks) that
vary by type of device, platform, RAM, and processing power.

Applications implemented: Wemotivate and study the performance of approximate computing via three well-known and
broadly-applied recognition algorithms, namely, Canny edge detection [9], Scale Invariant Feature Transform (SIFT) [10], and
the Histogram of Gradients (HoG) [11]. Fig. 5 shows the different tasks and their functions and input parameters that are
approximated for the two aforementioned algorithms. Both these exemplified applications extract different features from
input data for evaluation. We implemented both the applications on computing devices in our testbed using the OpenCV
library. We implemented both the applications on computing devices in our testbed using the OpenCV library. We estimate
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Table 4
Number of approximate instances in various stages of the offline profiling for Canny edge-detection
algorithm.

Accuracy loss (%) All workflows Rich workflows Optimized workflows Discarded

20 150 55 18 130
40 150 59 18 126
65 150 82 23 98
80 150 97 24 82

100 150 97 24 82

Table 5
Gain achieved by approximating tasks of Canny edge detection and SIFT.

Function/Parameter Range Accuracy loss (%) Speed up

Canny

Threshold [0,1) 2.76 1.75± 0.01
Sigma [0,1] 0.01 1.14± 0.01
Kernel size [3:11] 7.04 1.13± 0.012
Prewitt operator [3] 4.6 1.25± 0.90
Without smoothing – 2.8 2.33± 0.45
Without threshold – 2.1 1.65± 0.52
Without thinning – 7.8 1.33± 0.19

SIFT

No. of octaves [1,10] 0.7 1.5± 0.022
No. of spatial bins [1,10] 0.8 2.0± 0.025
No. of orientation [1, 23] 0.6 1.5± 0.034
No. of level [1,10] 0.85 2.0± 0.025

HoG

No. of cells [2,4,8] 0.8 3.0± 0.075
No. of blocks [2,4] 1 3.1± 0.01
No. of orientation [3:2:11] 1.4 2.6± 0.076
Kernel size [3:2:11] 1.3 3.0± 0.01

the energy consumption by an application via Power tutor app [30]. It gives the power consumption in Watt at an interval
of one second for all the applications running on the device.

Other applications: Our approach can be applied to a variety of other applications such as content-based image retrieval
from a database, lossy audio and video decoding such as x264 media application that performs H.264 encoding on a video
stream, delivering dynamic application accuracy in large datacenters depending on different factors (power, operating
temperature), and other computer-vision/robotic applications (such as panorama stitching and body/object tracking).

Input data set: We execute our application by using input data from the Berkeley image segmentation and benchmark
dataset [31]. For offline profiling, we used 200 grayscale images from the training data set; to determine performance
benefits at run-timewe used 100 images from the test data set, both available in [31]. Resolution of each image is 481×321
pixels. To study the performance gains obtained via approximation on HoG algorithm we used INRIA Person dataset [32].

Light-weight run-time algorithms: We implement in Android the Heuristic MP-SP algorithm to select the approximation
tasks. The algorithms to construct the approximate workflow need to be of low complexity because the gain in reduction in
makespan obtained from approximate computing should not be eclipsed by the execution time of algorithms to select the
approximate workflow at run time, which would result in a paradox.

Offline profiling: The framework performs offline profiling (as explained in Algorithm 1) of an application. In the
profiling phase, we execute the algorithms on the computing devices in our testbed and use as input data the images
from the training dataset in [31]. In Table 4, we observe how the number of approximate instances in rich workflow and
optimized workflow will vary as the acceptable accuracy loss is increased. The number of discarded workflows decreases
as the percentage of acceptable accuracy loss is increased; this is because the approximate instances that achieve speed up,
although at higher accuracy loss are, also included. Table 5 quantifies the gain of applying approximation transformations
to various tasks and parameters of the aforementioned applications.

Performance of approximate vs. exact computation: Fig. 6(a) and (b) show the results of percentage loss in accuracy
obtained when different levels of speed up are achieved by applying approximation transformation to the application. In
Fig. 6(a), we see that for Toshiba we achieve a speed up of 1.5 for 5% accuracy loss while for the other devices we get around
10% of accuracy loss. The speed up of Toshiba continues up to 1.9 but it saturates at 1.7 as for the other devices. Similarly, in
Fig. 6(b)we see that the speed up is 5 timeswhen the percentage accuracy loss is 3% for Toshiba. Similar trend is observed for
the other devices. We can notice that, although the makespan has decreased with different user-specified accuracy bounds,
it does not come at the cost of significant loss in accuracy. From the approximate instances, we can determine the Pareto-
optimal instances to reduce the approximable task space, as shown in Fig. 7(a). The red dots in the figure indicate the Pareto
Front for different applications. In Fig. 9(a), we see that for the devices we achieve energy savings of 30% for around 5% loss
in accuracy.

Performanceof theonline algorithm:We compare theperformance of our algorithmHeuristicMP-SP,which is required
to construct an approximate workflow given the run-time application deadline and accuracy loss. We assume the value of
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Fig. 6. Experiments. Percentage loss in accuracy versus speed-ups achieved by applying approximate computing techniques on (a) Canny edge detection
and (b) SIFT algorithm; (c) (Top) Pareto-optimal instances for Canny edge detection algorithm, (Bottom) Pareto-optimal instances for SIFT algorithm.

Fig. 7. Experiments. (a) (Top) Pareto-optimal instances for Canny edge detection algorithm, (Bottom) Pareto-optimal instances for SIFT algorithm;
(b) Testbed to study the gain in performance of approximate computing over exact computing in the presence of uncertainty experienced in a mobile
environment.

Fig. 8. Experiments. Comparison of probabilistic and deterministic framework in terms of (a) makespan and (b) accuracy loss incurred.

count, i.e., the number of shortest paths considered in Algorithm 3, to be 3. We compare the performance of our solution,
which we call ‘‘Optimized-WF Probabilistic’’, against a deterministic technique, where the delay value of an edge, d(e) in
Algorithm 3, is substituted with the mean delay (i.e., the average of delays obtained from different trials executed during
the offline phase). We call this approach ‘‘Optimized-WF Average’’. We also compare the performance when Algorithm
3 is applied on a rich workflow instead of on the optimized workflow. We call this approach ‘‘Rich-WF Probabilistic’’. In
Fig. 8(a), we see that all the techniques are able to give the output within the requested deadline. However, the difference
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Fig. 9. (a) Energy savings obtained by applying the approximation techniques to various tasks in the algorithms; Experiments.(b) Scenarios where
approximate computing can be beneficial in comparison to local exact computing and exact computing in the Cloud. The type of computation depends
on several factors such as type of application (interactive or non-interactive), accuracy requirements of the application, resources available, and network
latency.

in performance of the techniques is evident in Fig. 8(b), where we see that our Optimized-WF Probabilistic meets the
percentage accuracy loss as estimated by the non-linear model (shown in dotted red line). Conversely, for the other two
techniques a much higher accuracy loss is incurred in comparison to the expected one. The expected accuracy loss is
estimatedby thenon-linearmodel discussed in Section4. This is becauseRich-WFProbabilistic considers all the approximate
instances to select the approximate workflow and misses selection of Pareto-optimal instances, which have slightly higher
makespan but incur lower accuracy loss.

Overhead of the online algorithm: The overhead of online Algorithm 3 to select approximate workflow at run-time is
of the order of 6 ms. This is much lower than the reduction in gain in makespan achieved by approximate computing, which
is in the order of hundreds of milliseconds to seconds, as depicted in Fig. 6(a). Hence, our online approximation algorithm
incurs a very small penalty, i.e., its overhead is almost negligible compared against the substantial performance benefits it
brings in terms of speed up.

Applicability of approximate computing: In Fig. 9(b), we plot different regions of applicability of approximate
computing. If the user cannot tolerate any accuracy loss, e.g., face or fingerprint recognition application to unlock a device
or financial website, then the user is ready to wait for a longer duration and utilize higher resources without any sacrifice
of quality. In such a situation, exact computing is applied (seen in the rightmost pink region). Conversely, interactive
applications such as gaming or object recognition, where the user requires quick response and accuracy loss can be incurred
without any perceivable degradation of QoS for the user, are good candidates for approximate computing (seen in the
leftmost blue region). Also, the situations where the mobile device is limited by battery or does not have enough CPU cycles
to give a crisp response to the user, approximate computation is beneficial. Response from cloud applications depend on
the network latency; hence, in situations with high cloud latency or with intermittent network connectivity, approximate
computing can be applied to give low response time (seen in the middle green region).

Performance of approximate computing in an uncertain mobile environment: Our goal is to study the benefits of
approximate computing in a Mobile Device Cloud (MDC) where a resource-constrained mobile device offloads its tasks
to nearby devices. Uncertainty in a MDC may arise due to device mobility, which determines the availability duration of
devices, and network connectivity, which determines the communication cost of offloading tasks. In our experiments the
communication between devices in a MDC is achieved using the functionality in the AllJoyn framework [29], an open-
source, platform-independent software system that provides an environment for distributed applications running across
different classes of devices. An AllJoyn thin app is designed for energy-, memory-, and CPU-constrained devices and has
a very small memory footprint. Fig. 7(b) shows the architecture for our testbed. The service requester device contains the
resource task mapper, which is responsible to allocate task to different service providers. We assume a fair, simple, and
robust round-robin-based technique to distribute tasks in an MDC.

We model the mobility patterns of devices in the proximity as a normal distribution with mean availability duration of
devices varying with µ = {5, 100, 200} s and σ = 5 s. Our first result shows the gain obtained by the execution in a MDC in
comparison to a centralized computation. In this scenario, we implement the Canny edge-detection application on devices
via exact computation. In Fig. 10(a), we plot the time taken to execute an application as themean availability duration of the
devices in theMDC is varied. Interestingly, as the arrival duration of devices increases, the rate at which tasks are completed
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Fig. 10. (a) Comparison of performance of exact computing in a centralized implementation vs. in a mobile device cloud in the presence of uncertainty
in (i) device availability due to network disconnections and device mobility and (ii) variable task sizes; (b) Comparison of performance of approximate
computing vs. exact computing in a mobile device cloud in the presence device mobility.

Fig. 11. (a) Performance gains obtained by reducing the spatial resolution by half of the original input image and executing HoG algorithm on them;
(b) Varying the reduction in spatial resolution of the input image to study the performance gains.

increases. Also, in spite of the offloading cost, MDCs finish the execution faster than centralized exact computing. Next, we
compare the performance of exact versus approximate execution of an application in a MDC. In Fig. 10(b), we see that by
applying approximation in a MDC we are able to achieve a much higher Frame Per Second (FPS) rate. This is beneficial in
case of interactive applications that have to meet a time-critical application deadline.

Data-dependent approximation: In Fig. 11(a) we see the performance of the HoG algorithmwhen the image resolution
is reduced by half, andwe study the execution time and accuracywhen the approximate parameters (different cell sizes) are
applied in conjunction with the reduction of the input size. We see significant energy gains for all the cell sizes. In Fig. 11(b)
we see the performance of HoG algorithmwhen the spatial resolution of input data has been reduced by different amounts.
We see a reduction in the spatial resolution to be up to 80% for up to 25% loss in accuracy.

In Fig. 12 we see the comparison of various approximation techniques that are introduced in this paper. In Fig. 12 we
first show the loss in accuracy obtained and then present the speed up obtained by implementing various scenarios. For
each scenario we vary the threshold parameter (α) of the Canny-edge detection application, downsample the input data
by a certain value (s). The size of the resulting image after downsampling is 1

s times the original size of input image. We
study the effect of task-based approximation, input data approximation, and both combined together. Each scenario reflects
specific values of s and α. For Scenario-1 the value of threshold parameter for task-based approximation (when input data is
not downsampled) and sampling factor for input-data based approximation (when tasks are not approximated) are 0.1 and
16, respectively; Scenario-2: 0.3 and 8; Scenario-3: 0.5 and 4; Scenario-4: 0.5 and 2. In Fig. 12(a) we see that, as expected,
the performance of the combination of approximation of both task and data is worse than that of other techniques; this is
because when the two types of approximations are applied together, although they give higher speed up, they also cause a
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Fig. 12. (a) Loss in accuracy and (b) Speed-up obtained in Canny-edge detection algorithm by applying various approximation techniques, namely, task
approximation, approximation of the input data and combination of both techniques.

Fig. 13. (a) Loss in accuracy and (b) Speed-up obtained in SIFT algorithm by applying various approximation techniques, namely, task approximation,
approximation of the input data and combination of both techniques.

higher loss in accuracy. Such increase in speed up for loss in accuracy can be seen in Scenario 3 and 4 of Fig. 12(b). However,
in Scenario 1 and 2 we see that we get a reduction in speed up for the combination of approximation of task and data
as compared to when only data is approximated, although the accuracy continues to decrease as expected. This result is
specific to how Canny-edge-detection algorithm works. In this simulation result we have introduced task approximation
in the combination case by varying only the threshold parameter (α) for task approximation and approximating data. The
algorithm calculates a value called level, which is a function of the pixel values of the image and of the approximated task
parameterα. The value of level alongwith the pixel values of the image impacts the number of iterations incurred in the next
task ‘‘thinning’’ of the Canny-edge-detection algorithm, as seen in Fig. 5(a). There is a possibility in the combination case
(data and task approximation) that based on the value of level and on the pixel values, the number of iterations is now higher
(as in Scenario A) or comparable (as in Scenario B). The gain achieved via approximation of input data is reduced due to an
increase in the number of iterations in the later stages of the algorithm. This is noticeable when the image pixel values do
not vary significantly. Such increase in the number of iterations leads to an increase in execution time and a loss in speed up.

In Fig. 13(a) and (b) we see similar results for the SIFT algorithm, where we vary the value of sampling factor (input-data
approximation) and the number of levels (task approximation) to study the performance gains, i.e., Scenario 1: the value of
number of levels parameter and sampling factor is 2 and 16; Scenario 2: 4 and 8; Scenario 3: 6 and 4; Scenario 4: 8 and 2.

6. Conclusion

We considered the new paradigm of approximate computing to exploit the untapped potential of mobile distributed
computing and to enable real-time pervasive applications in a resource-constrained Mobile Device Cloud (MDC). We
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introduced a MDC framework that determines offline the approximable tasks in an application via powerful workflow
representation and data approximation schemes. We proposed a light-weight, online algorithm to select in real time the
approximable tasks to be executed in the MDC. We validated the effectiveness of the proposed approach through extensive
simulations and testbed experiments taking as motivating example three different algorithms for interactive perceptive
object recognition, and observed that on our testbed their approximate implementations perform better than their exact
counterpart.
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