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Abstract: To achieve efficient and cost-effective sensing coverage of the vast under-sampled
3D aquatic volume, intelligent adaptive sampling strategies involving Autonomous Underwater
Vehicles (AUVs) endowed with underwater wireless (acoustic) communication capabilities
are essential. These AUVs should coordinate and steer through the region of interest, and
cooperatively sense, preprocess and transmit measured data to onshore stations for processing
and analysis. Given a scalar field to sample, i.e, a phenomenon like temperature or salinity
distribution, the AUVs should coordinate to take measurements using minimal resources (time
or energy) in order to reconstruct the field with admissible error. A novel adaptive sampling
solution to minimize the sampling cost is proposed, which requires the AUVs to take a small
number of samples from the field. We observe via simulations that our solution outperforms
existing solutions that are based on Compressive Sensing (CS) techniques.
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1. INTRODUCTION

Ocean weather forecast relies on the state (such as temper-
ature) of the fluid sampled at a given time and uses fluid
dynamics and thermodynamics to predict the state of the
fluid in the future [Lynch (2008)]. It is known that a small
uncertainty in the initial and boundary conditions (such as
ocean surface temperature) may lead to large deviation in
real-time ocean forecasting [Palmer (1999)]. To minimize
such deviation, an accurate reconstruction of the ocean
scalar field is therefore necessary. Existing observation
solutions using satellites lack depth information, whereas
using static observation networks may not be optimal as
sampling regions of different dynamics requires the ability
to change the sensor spatial distribution. Consequently,
there is a need for adaptive sampling solutions as the
sensors should be deployed and moved dynamically for
optimal sampling performance. This can be done using a
team of Autonomous Underwater Vehicles (AUVs), which
can coordinate to sample the phenomenon.

To be able to perform adaptive sampling, the AUVs need
to adjust real time their trajectory, inter-vehicle distance,
or formation based on the field measurements. In [Chen
and Pompili (2012)], we proposed sampling of a field by
a team of AUVs by controlling the group trajectory. The
sampling technique employed was not adaptive but took
as input information from oceanographers. Many adaptive
sampling solutions for measurement of ocean physical and
chemical processes using AUVs have been proposed such
as [Yilmaz et al. (2008); Fiorelli et al. (2003); Popa et al.
(2004)]. These solutions focus on tracking a given region
in such a way as to maximize certain objective functions,
e.g., the gradient of the process.
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Recently, Donoho has proposed Random Compressive
Sensing (RCS), which offers a novel way to capture
and reconstruct a signal using minimal number of sam-
ples [Donoho (2006)]. In RCS, a sparse signal x ∈ CN

with sparsity S (i.e., the number of non-zero elements in
x), with S ≪ N , can be recovered from the measurement
y ∈ CK , where K ≥ S · logN , by finding the solution to
the following optimization problem: minimize the ℓ1-norm
‖x‖ℓ1 subject to y = Φx, where Φ is the K × N sensing
(also called measurement) matrix.

Another paradigm, called Deterministic Compressive Sens-
ing (DCS) [DeVore (2007)], has been introduced where the
sensing matrix Φ is constructed deterministically using
different coding schemes, e.g., the discrete chirp codes [Ap-
plebaum et al. (2009)]. Note that, given a scalar field, RCS
takes samples at random locations, whereas DCS takes
samples at locations pre-estimated using coding schemes.
The major drawback of these techniques is that they do
not take into account the real-time characteristics of the
field to estimate the locations from where samples should
be taken, which makes them unsuitable to implement
adaptive sampling strategies. For example, to accurately
reconstruct a temperature field, regions with relatively
constant (i.e., low-varying) temperature values should be
sampled at a lower rate than regions with large variations
in temperature. CS techniques are not able to exploit the
distinction between the rate of sampling based on features
from the field of interest.

For this reason, we propose a novel adaptive sampling solu-
tion for AUVs to reconstruct a scalar ocean phenomenon.
We first obtain a preliminary estimate of the field using
a conventional lawn-mower trajectory (Phase I) and then
take samples at locations estimated by an optimization
algorithm (Phase II). The objective of the optimization



algorithm is: first, to reconstruct the phenomenon by min-
imizing the maximum reconstruction error (Sub-procedure
1); then, to minimize the energy consumption for one
pass of sampling for long-term monitoring missions (Sub-
procedure 2). Our contributions are: 1) we adaptively
estimate the sampling locations in the field of interest by
minimizing a cost (or utility) function that represents the
reconstruction error or consumed energy (depending on
the application requirements); 2) we propose a solution
that allows a team of AUVs to sample jointly a field using
our sampling solution; and 3) we compare our solution
against DCS and RCS, which cannot adapt to field mea-
surements, and show that our solution outperforms them.

The remainder of this paper is organized as follows: in
Sect. 2, we describe our proposed solution to sample
adaptively a region of interest; in Sect. 3, we evaluate the
performance of our approach; finally, in Sect. 4, we draw
the conclusions and provide a brief note on future work.

2. PROPOSED SOLUTION

To sample a field of interest, an AUV moves across a
field by following a certain trajectory and takes samples
as it moves. One conventional method to achieve this is
to steer the AUV in a lawn-mower style and take sam-
ples at equidistant positions: such a method is, however,
inefficient as the AUV needs to scan through the whole
area. Conversely, efficient solutions can be developed that
take samples at a smaller number of locations so to reduce
the cost (such as energy or error) incurred to reconstruct
the field. We present our solution that minimizes a cost
function (energy or reconstruction error, depending on the
application requirements) to sample a region of interest.

Our solution consists of two phases: Phase I, in which
the field is scanned completely using conventional lawn-
mower-style sampling to obtain a preliminary estimate of
the field; and Phase II, in which the field is scanned
adaptively after Phase I. Phase II is repeated until it
is necessary to re-run Phase I (e.g., when the field has
changed ‘appreciatively’ from its preliminary measurement
of Phase I). Phase I serves as a preceding stage to collect
preliminary field information for Phase II. We assume
that the process to be measured in the sampling field is
changing slowly so that the change of field between two
consecutive rounds of Phase II is very small. Depending
on the movement characteristics of the vehicles in use,
different sampling strategies can be applied. For example,
if the AUVs are propeller driven, the 3D region can be
divided into multiple 2D horizontal planes to reduce the
control complexity of changing the buoyancy or vertical
thruster to move up or down. Hence, in this paper we
focus on sampling a 2D horizontal plane.

2.1 Centralized Multi-Vehicle Sampling Optimization

Once the preliminary estimate of the field is obtained
in Phase I, we adaptively sample the field in Phase II,
which is further subdivided into two sub-procedures. Each
sub-procedure aims at reconstructing the scalar field by
minimizing a particular objective function: the maximum
reconstruction error (sub-procedure 1) and the energy
consumption (sub-procedure 2). The two sub-procedures
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Fig. 1. Trajectory planning for one vehicle, V = 1.
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Fig. 2. Trajectory planning for three vehicles, V = 3.

are run consecutively, with sub-procedure 1 employed
first to obtain accurate reconstruction of the field and
later, for long-term sampling of a field, sub-procedure 2 is
employed, which takes samples by minimizing the energy
while the reconstruction error is bounded. Note that both
sub-procedures can also be run independently according
to the sampling mission requirement (i.e., minimizing
reconstruction error or consumed energy).

To illustrate the idea of our solution, we start from the case
when the number of vehicles is one, i.e., V = 1 (Fig. 1).
The AUV will follow the lawn-mower trajectory to scan the
region. At each pass of the scan, the AUV uses the field
information it got from the previous scan to optimize its
lawn-mower trajectory. In other words, the AUV uses the
field reconstructed during the (k − 1)th pass to optimize
its trajectory at the kth pass; it calculates the optimal
number M∗ of segments as well as the distances dm’s
(m = 1, . . . ,M∗) between two neighboring line segments.
Further improvement can be made by using the samples
collected in all previous passes to optimize the current
pass. Note that during the first, i.e., the 0th pass, the AUV
follows a conventional lawn-mower trajectory with equal
spacing, whose distance is given by oceanographers based
on a-priori information on the field. Suppose the recon-

structed field for the kth pass is denoted by f̂k(x, y, z) at



position (x, y, z), then dm’s should be selected to minimize

the function max(x,y,z)∈R |f̂k(x, y, z)−f̂k−1(x, y, z)|, where
R denotes the region being sampled. As shown in Fig. 1,
based on the previous sampling information, the vehicle
decides the optimal number M∗ of segments (parallel to
the y-axis) and the distances dm’s between consecutive
segments; then, it follows this optimal trajectory while

sampling. Generally speaking, the reconstructed f̂ has
a large error in regions with frequent changes as there
the reconstruction is less accurate. Therefore, dm in these
regions should be small. On the other hand, the recon-

structed f̂ has small error in regions with less changes,
resulting in large dm in these regions.

We now formulate an optimization problem for sub-
procedure 1 where the maximal reconstruction error
should be minimized with the energy consumption as a
constraint. We assume that multiple AUVs are used to
sample the field. As V > 1, besides M∗ and the distances
dm’s between two neighboring line segments, we need to
include the dimension of the whole team, as illustrated
in Fig. 2 for V = 3. Suppose the AUVs form a linear
formation of width lm with the same distance between
each pair of neighbors when they are taking samples at
the mth segment. We denote the margin distances of the
starting and ending segments by b0 and bM+1, respectively.
Similarly to the case of a single vehicle, we should optimize
M , dm’s, and lm’s (m = 1, . . . ,M).

Multi-Vehicle Error Minimization Problem:

Find: M∗, d∗m, l∗m;m = 1, . . . ,M∗

Min: max
(x,y,z)∈R

|f̂k(x, y, z)− f̂k−1(x, y, z)|

S.t.: Ej(S,M, v) = Eseg,j(S, v) +Eturn,j(θm) +NsmpEsmp,j ;
(1)

Ej(S,M, v) ≤ Eth. (2)

In this formulation, f̂k(x, y, z) denotes the reconstructed
field value at position (x, y, z) for the kth pass, lm is the
group width of these V AUVs. Eseg,j(S, v), Eturn,j(θm),
and Esmp,j are the energy consumed while vehicle j travels
through the line segments, makes turns, and takes one
sample, respectively. Besides the energy consumption, the
AUVs are constrained by the time constraint to finish one
pass and by the dimension of the sampling field.

Additional Relations and Constraints:

M∑

m=1

dm + (l1 + lM )/2 + b0 + bM+1 ≤ L; (3)

S = M ·W +

M−1∑

m=1

dm; (4)

dm = (lm + lm−1)/2 + bm; (5)

bm = lm/(V − 1); (6)

tj(S,M, v) =
S

v
+

M∑

m=1

tj(θm) +Nsmptsmp,j ; (7)

tj(S,M, v) ≤ Tth; (8)

dm ≥ dth; (9)

b0 ≤ l1/(V − 1); bM+1 ≤ lM/(V − 1). (10)

Here, (4) represents the total length of the trajectory given
the width of the field W and the distance between two
neighboring segments dm. The distance between segments

of team of AUVs is represented by (5) given the number
of vehicles V and width of linear formation lm of the team
of AUVs, while (7) represents the time taken to finish one
round of sampling given the time taken to turn tj(θm),
number of samples Nsmp taken by the team of AUV, and
velocity v of the team of AUVs. Constraint (8) imposes
that the time taken to finish one round of sampling be
below a threshold value, whereas (9) constraints the dis-
tance between two neighboring segments dm be greater
than a pre-defined threshold value dth. In (10) the maxi-
mum value of margin distance of the starting and ending
segments of AUVs is defined given number of vehicles V
and number of segments M .

For sub-procedure 2, we change the objective function to
be the minimization of the energy to finish one pass of
sampling and add an error bounding constraint, leading
to the following optimization problem.

Multi-Vehicle Energy Minimization Problem:

Find: M∗, d∗m, l∗m;m = 1, . . . ,M∗

Min: Ej(S,M, v);

S.t.: max
(x,y,z)∈R

|f̂k(x, y, z)− f̂k−1(x, y, z)| ≤ ǫ. (11)

While executing a particular sub-procedure, the vehicles
send their samples to one vehicle, called team leader. This

leader then estimates the field of interest f̂(x, y, z) using
methods such as interpolation/extrapolation. For example,
if bilinear interpolation is used to estimate a 2D field, the

value at (x, y) can be represented by f̂(x, y) = 1
xk
i+1

−xk
i

·

1
yk
j+1

−yk
j

· [xk
i+1 − x x − xk

i ] · A
k
i,j · [ykj+1 − y y − ykj ]

T ,

where (x, y) is in the region constrained by [xk
i , xk

i+1]

along the x-axis and [ykj , ykj+1] along the y-axis, Ak
i,j

is the 2 × 2 measurement matrix at the kth round, i.e.,

Ak
i,j = [f̂(xk

i , y
k
j ) f̂(xk

i , y
k
j+1); f̂(x

k
i+1, y

k
j ) f̂(xi+1, yj+1)].

From (9) and (8), we can estimate the range of M being
M ≤ min(L/dth, Tth · v/W ). To solve it, we can do the
exhaustive search after discretization, i.e., dm and lm can
only take one value in the set {m ·L/NL,m = 0, . . . , NL−
1} of NL numbers, whose computation complexity is

O(Mmin · NMmin

L ), where Mmin = min(L/dth, Tth · v/W ).
Improvements to such search can be made by observing

the specific characteristics of the field f̂(x, y, z).

2.2 Distributed Multi-Vehicle Sampling Optimization

To reduce the complexity of the above optimization at
the leader side, the computation can be distributed to the
whole team of AUVs. To achieve this, we can decompose
the centralized optimization problem into sub-problems
that can be run at different AUVs. We can discretize the x
direction into Hx values, which is then further partitioned
into V intervals. These intervals are then distributed to
the V vehicles of the team and each vehicle will estimate
the team trajectory in its assigned interval. In this way,
the problem can be decomposed into sub-optimization
problems for individual vehicles to solve. Note that the
boundaries of these sub-problems should be the same for
consecutive regions, i.e., the ending point of one region
should be the same as the starting point of the next
region. Each vehicle solves for the same optimization for
their assigned sub-region. In addition, we add two more
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Fig. 3. Performance comparison of our solution with existing sampling solutions.

constraints for the starting and ending point of the planned
trajectory – the starting point of the trajectory in one
sub-region should be the same as the ending point in its
previous sub-region, and the ending point should be the
same as the starting point in its next sub-region. These
two constraints introduce coupling between consecutive sub-
problems. Such coupling can be removed by adding an
interface variable representing the constrained position
between two consecutive sub-problems. After the assigned
sub-problem is solved, each vehicle sends the optimal
parameters and trajectory back to the team leader so that
the trajectory for the whole region is obtained.

3. PERFORMANCE EVALUATION

We compared via thorough simulations our sampling so-
lutions against 1) the conventional lawn-mower-style sam-
pling (which is based on the AUV-coordination solution
proposed in [Chen and Pompili (2012)], where the AUVs
follow a lawn-mower trajectory and take measurements
equidistant from each other), 2) DCS (where the sampling
locations are chosen using discrete chirp codes [Applebaum
et al. (2009)]), and 3) RCS (which is based on [Hummel
et al. (2011)], where measurements are taken at random
locations in the field). For both RCS and DCS, once the
locations have been determined offline, a shortest-path
algorithm is run to calculate the trajectory of AUVs.

We present the results for both proposed sub-procedures;
the metrics for comparison are: i) minimum reconstruction
error, ii) energy consumed, and iii) time taken to sample
the field. We assumed the temperature field is a unit 2D
square (i.e., 1× 1 km2) region on the ocean surface. Each
AUV is assumed to move at a horizontal speed of 0.001
unit distance per second (e.g., 1 m/s in a 1×1 km2 region).
The communication between AUVs is assumed to use
ideal underwater acoustic technology (i.e., no errors and
no delay). For statistical relevance, we ran simulations over
50 different ocean temperature images and the average is
plotted with 95% confidence intervals. The images used for
simulation are accessible at [JPL (2012)].

We first present the results for sub-procedure 1 of our
solution in comparison to existing solutions in Fig. 3(a).
For Phase I of sub-procedure 1, we use a lawn-mower tra-
jectory to obtain a preliminary estimate of the field. This
estimate is also required by DCS and RCS to construct

the measurement matrix. Lawn-mower-style sampling does
not require preliminary estimate of the field as it takes
samples at equidistant locations in the original field. We
see that our solution gives minimum reconstruction error
in comparison to other techniques. The main reason for
this is that existing solutions do not consider the charac-
teristics of the field of interests to estimate the sampling
locations. They select fixed number of samples irrespective
of the underlying data, hence, are not adaptive to field
measurements. The DCS solution, which uses chirp codes,
requires that the sparsity be much higher than that present
in the temperature images considered in our simulations,
as a result of which the reconstruction error is high.

Figure 3(b) shows the time taken by the vehicle to sample
a field versus the size of the region. The time taken is
calculated as the sum of time taken to do the pre-scanning
in Phase 1 and to acquire samples at locations provided
by different techniques. Compared to DCS, our solution
takes shorter time because it requires fewer samples for
reconstruction. The time taken by our solution is higher
than that by lawn-mower-style sampling as we employ a
pre-scanning phase to get a preliminary estimate of the
field. The pre-scanning phase is not included in lawn-
mower-style sampling.

For sub-procedure 2, the energy is calculated by bounding
the reconstruction error of the field obtained in sub-
procedure 1. Figure 3(c) shows the energy consumed while
sampling the field versus the variation in field size. We
see that our solution consumes lower energy than DCS
because fewer measurements are required. The energy
consumed by our solution is comparable to that by RCS.
As our solution involves an additional pre-scanning phase,
the energy consumed by our solution is higher than that by
the lawn-mower style sampling in spite of having almost
equal number of measurements in Phase II.

In Figs. 4(a),(b),(c) and Figs. 5(a),(b), we present an ex-
ample of a reconstructed field using our adaptive sampling
solution and other existing solutions (the sampling loca-
tions in the field are denoted by white dots). In Fig. 5(b),
we can see that – although our solution follows a trajec-
tory similar to a conventional lawn-mower technique – the
samples are not equidistant from each other, i.e., they are
chosen adaptively by our optimization algorithm.



Normalized x−dimension [%]

N
o

rm
a

liz
e

d
 y

−
d

im
e

n
si

o
n

 [
%

]

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

100

120

140

160

180

200

220

240

260

280

(a) Original Image

Normalized x−dimension [%]

N
o

rm
a

liz
e

d
 y

−
d

im
e

n
si

o
n

 [
%

]

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

100

120

140

160

180

200

220

240

260

280

(b) Lawn-mower-style Sampling
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(c) Random Compressive Sensing (RCS)

Fig. 4. Reconstructed images with sampling locations (denoted by white dots).
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(a) Deterministic Compressive Sensing (DCS)
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(b) Adaptive Sampling Solution

Fig. 5. Reconstructed images with sampling locations (denoted by white dots).

4. CONCLUSION AND FUTURE WORK

We proposed an adaptive sampling solution for a team of
Autonomous Underwater Vehicles (AUVs) to sample the
ocean temperature field and developed efficient distributed
algorithms that can minimize the sampling cost (energy or
time). These solutions minimize a cost (or utility) function
that represents the reconstruction error or the consumed
energy to sample a phenomenon. Our solution is compared
against existing sampling solutions and improved perfor-
mance is observed. As future work, we will extend our
solution to fast-changing phenomena by incorporating the
prediction for the change of the sampled phenomenon.
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